|
|
unit imjchuff;
{ This file contains Huffman entropy encoding routines.
Much of the complexity here has to do with supporting output suspension. If the data destination module demands suspension, we want to be able to back up to the start of the current MCU. To do this, we copy state variables into local working storage, and update them back to the permanent JPEG objects only upon successful completion of an MCU. }
{ Original: jchuff.c; Copyright (C) 1991-1997, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses imjmorecfg, { longptr definition missing } imjpeglib, imjdeferr, imjerror, imjutils, imjinclude, imjcomapi;
{ The legal range of a DCT coefficient is -1024 .. +1023 for 8-bit data; -16384 .. +16383 for 12-bit data. Hence the magnitude should always fit in 10 or 14 bits respectively. }
{$ifdef BITS_IN_JSAMPLE_IS_8} const MAX_COEF_BITS = 10; {$else} const MAX_COEF_BITS = 14; {$endif}
{ Derived data constructed for each Huffman table } { Declarations shared with jcphuff.c } type c_derived_tbl_ptr = ^c_derived_tbl; c_derived_tbl = record ehufco : array[0..256-1] of uInt; { code for each symbol } ehufsi : array[0..256-1] of byte; { length of code for each symbol } { If no code has been allocated for a symbol S, ehufsi[S] contains 0 } end; { for JCHUFF und JCPHUFF } type TLongTable = array[0..256] of long; TLongTablePtr = ^TLongTable;
{ Compute the derived values for a Huffman table. Note this is also used by jcphuff.c. }
{GLOBAL} procedure jpeg_make_c_derived_tbl (cinfo : j_compress_ptr; isDC : boolean; tblno : int; var pdtbl : c_derived_tbl_ptr);
{ Generate the optimal coding for the given counts, fill htbl. Note this is also used by jcphuff.c. }
{GLOBAL} procedure jpeg_gen_optimal_table (cinfo : j_compress_ptr; htbl : JHUFF_TBL_PTR; var freq : TLongTable); { Nomssi }
{ Module initialization routine for Huffman entropy encoding. }
{GLOBAL} procedure jinit_huff_encoder (cinfo : j_compress_ptr);
implementation
{ Expanded entropy encoder object for Huffman encoding.
The savable_state subrecord contains fields that change within an MCU, but must not be updated permanently until we complete the MCU. }
type savable_state = record put_buffer : INT32; { current bit-accumulation buffer } put_bits : int; { # of bits now in it } last_dc_val : array[0..MAX_COMPS_IN_SCAN-1] of int; { last DC coef for each component } end;
type huff_entropy_ptr = ^huff_entropy_encoder; huff_entropy_encoder = record pub : jpeg_entropy_encoder; { public fields }
saved : savable_state; { Bit buffer & DC state at start of MCU }
{ These fields are NOT loaded into local working state. } restarts_to_go : uInt; { MCUs left in this restart interval } next_restart_num : int; { next restart number to write (0-7) }
{ Pointers to derived tables (these workspaces have image lifespan) } dc_derived_tbls : array[0..NUM_HUFF_TBLS-1] of c_derived_tbl_ptr; ac_derived_tbls : array[0..NUM_HUFF_TBLS-1] of c_derived_tbl_ptr;
{$ifdef ENTROPY_OPT_SUPPORTED} { Statistics tables for optimization } dc_count_ptrs : array[0..NUM_HUFF_TBLS-1] of TLongTablePtr; ac_count_ptrs : array[0..NUM_HUFF_TBLS-1] of TLongTablePtr; {$endif} end;
{ Working state while writing an MCU. This struct contains all the fields that are needed by subroutines. }
type working_state = record next_output_byte : JOCTETptr; { => next byte to write in buffer } free_in_buffer : size_t; { # of byte spaces remaining in buffer } cur : savable_state; { Current bit buffer & DC state } cinfo : j_compress_ptr; { dump_buffer needs access to this } end;
{ Forward declarations } {METHODDEF} function encode_mcu_huff (cinfo : j_compress_ptr; const MCU_data : array of JBLOCKROW) : boolean; forward; {METHODDEF} procedure finish_pass_huff (cinfo : j_compress_ptr); forward; {$ifdef ENTROPY_OPT_SUPPORTED} {METHODDEF} function encode_mcu_gather (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; forward;
{METHODDEF} procedure finish_pass_gather (cinfo : j_compress_ptr); forward; {$endif}
{ Initialize for a Huffman-compressed scan. If gather_statistics is TRUE, we do not output anything during the scan, just count the Huffman symbols used and generate Huffman code tables. }
{METHODDEF} procedure start_pass_huff (cinfo : j_compress_ptr; gather_statistics : boolean); var entropy : huff_entropy_ptr; ci, dctbl, actbl : int; compptr : jpeg_component_info_ptr; begin entropy := huff_entropy_ptr (cinfo^.entropy);
if (gather_statistics) then begin {$ifdef ENTROPY_OPT_SUPPORTED} entropy^.pub.encode_mcu := encode_mcu_gather; entropy^.pub.finish_pass := finish_pass_gather; {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end else begin entropy^.pub.encode_mcu := encode_mcu_huff; entropy^.pub.finish_pass := finish_pass_huff; end;
for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; dctbl := compptr^.dc_tbl_no; actbl := compptr^.ac_tbl_no; if (gather_statistics) then begin {$ifdef ENTROPY_OPT_SUPPORTED} { Check for invalid table indexes } { (make_c_derived_tbl does this in the other path) } if (dctbl < 0) or (dctbl >= NUM_HUFF_TBLS) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0) or (actbl >= NUM_HUFF_TBLS) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, actbl); { Allocate and zero the statistics tables } { Note that jpeg_gen_optimal_table expects 257 entries in each table! } if (entropy^.dc_count_ptrs[dctbl] = NIL) then entropy^.dc_count_ptrs[dctbl] := TLongTablePtr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, 257 * SIZEOF(long)) ); MEMZERO(entropy^.dc_count_ptrs[dctbl], 257 * SIZEOF(long)); if (entropy^.ac_count_ptrs[actbl] = NIL) then entropy^.ac_count_ptrs[actbl] := TLongTablePtr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, 257 * SIZEOF(long)) ); MEMZERO(entropy^.ac_count_ptrs[actbl], 257 * SIZEOF(long)); {$endif} end else begin { Compute derived values for Huffman tables } { We may do this more than once for a table, but it's not expensive } jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, entropy^.dc_derived_tbls[dctbl]); jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, entropy^.ac_derived_tbls[actbl]); end; { Initialize DC predictions to 0 } entropy^.saved.last_dc_val[ci] := 0; end;
{ Initialize bit buffer to empty } entropy^.saved.put_buffer := 0; entropy^.saved.put_bits := 0;
{ Initialize restart stuff } entropy^.restarts_to_go := cinfo^.restart_interval; entropy^.next_restart_num := 0; end;
{ Compute the derived values for a Huffman table. This routine also performs some validation checks on the table.
Note this is also used by jcphuff.c. }
{GLOBAL} procedure jpeg_make_c_derived_tbl (cinfo : j_compress_ptr; isDC : boolean; tblno : int; var pdtbl : c_derived_tbl_ptr); var htbl : JHUFF_TBL_PTR; dtbl : c_derived_tbl_ptr; p, i, l, lastp, si, maxsymbol : int; huffsize : array[0..257-1] of byte; huffcode : array[0..257-1] of uInt; code : uInt; begin { Note that huffsize[] and huffcode[] are filled in code-length order, paralleling the order of the symbols themselves in htbl->huffval[]. }
{ Find the input Huffman table } if (tblno < 0) or (tblno >= NUM_HUFF_TBLS) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tblno); if isDC then htbl := cinfo^.dc_huff_tbl_ptrs[tblno] else htbl := cinfo^.ac_huff_tbl_ptrs[tblno]; if (htbl = NIL) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tblno);
{ Allocate a workspace if we haven't already done so. } if (pdtbl = NIL) then pdtbl := c_derived_tbl_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(c_derived_tbl)) ); dtbl := pdtbl;
{ Figure C.1: make table of Huffman code length for each symbol }
p := 0; for l := 1 to 16 do begin i := int(htbl^.bits[l]); if (i < 0) and (p + i > 256) then { protect against table overrun } ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE); while (i > 0) do begin huffsize[p] := byte(l); Inc(p); Dec(i); end; end; huffsize[p] := 0; lastp := p;
{ Figure C.2: generate the codes themselves } { We also validate that the counts represent a legal Huffman code tree. }
code := 0; si := huffsize[0]; p := 0; while (huffsize[p] <> 0) do begin while (( int(huffsize[p]) ) = si) do begin huffcode[p] := code; Inc(p); Inc(code); end; { code is now 1 more than the last code used for codelength si; but it must still fit in si bits, since no code is allowed to be all ones. }
if (INT32(code) >= (INT32(1) shl si)) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE); code := code shl 1; Inc(si); end;
{ Figure C.3: generate encoding tables } { These are code and size indexed by symbol value }
{ Set all codeless symbols to have code length 0; this lets us detect duplicate VAL entries here, and later allows emit_bits to detect any attempt to emit such symbols. }
MEMZERO(@dtbl^.ehufsi, SIZEOF(dtbl^.ehufsi));
{ This is also a convenient place to check for out-of-range and duplicated VAL entries. We allow 0..255 for AC symbols but only 0..15 for DC. (We could constrain them further based on data depth and mode, but this seems enough.) }
if isDC then maxsymbol := 15 else maxsymbol := 255;
for p := 0 to pred(lastp) do begin i := htbl^.huffval[p]; if (i < 0) or (i > maxsymbol) or (dtbl^.ehufsi[i] <> 0) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE); dtbl^.ehufco[i] := huffcode[p]; dtbl^.ehufsi[i] := huffsize[p]; end; end;
{ Outputting bytes to the file }
{LOCAL} function dump_buffer (var state : working_state) : boolean; { Empty the output buffer; return TRUE if successful, FALSE if must suspend } var dest : jpeg_destination_mgr_ptr; begin dest := state.cinfo^.dest;
if (not dest^.empty_output_buffer (state.cinfo)) then begin dump_buffer := FALSE; exit; end; { After a successful buffer dump, must reset buffer pointers } state.next_output_byte := dest^.next_output_byte; state.free_in_buffer := dest^.free_in_buffer; dump_buffer := TRUE; end;
{ Outputting bits to the file }
{ Only the right 24 bits of put_buffer are used; the valid bits are left-justified in this part. At most 16 bits can be passed to emit_bits in one call, and we never retain more than 7 bits in put_buffer between calls, so 24 bits are sufficient. }
{LOCAL} function emit_bits (var state : working_state; code : uInt; size : int) : boolean; {INLINE} { Emit some bits; return TRUE if successful, FALSE if must suspend } var { This routine is heavily used, so it's worth coding tightly. } {register} put_buffer : INT32; {register} put_bits : int; var c : int; begin put_buffer := INT32 (code); put_bits := state.cur.put_bits;
{ if size is 0, caller used an invalid Huffman table entry } if (size = 0) then ERREXIT(j_common_ptr(state.cinfo), JERR_HUFF_MISSING_CODE);
put_buffer := put_buffer and pred(INT32(1) shl size); { mask off any extra bits in code }
Inc(put_bits, size); { new number of bits in buffer }
put_buffer := put_buffer shl (24 - put_bits); { align incoming bits } put_buffer := put_buffer or state.cur.put_buffer; { and merge with old buffer contents } while (put_bits >= 8) do begin c := int ((put_buffer shr 16) and $FF);
{emit_byte(state, c, return FALSE);} { Emit a byte, return FALSE if must suspend. } state.next_output_byte^ := JOCTET (c); Inc(state.next_output_byte); Dec(state.free_in_buffer); if (state.free_in_buffer = 0) then if not dump_buffer(state) then begin emit_bits := FALSE; exit; end;
if (c = $FF) then { need to stuff a zero byte? } begin {emit_byte(state, 0, return FALSE);} state.next_output_byte^ := JOCTET (0); Inc(state.next_output_byte); Dec(state.free_in_buffer); if (state.free_in_buffer = 0) then if not dump_buffer(state) then begin emit_bits := FALSE; exit; end;
end; put_buffer := put_buffer shl 8; Dec(put_bits, 8); end;
state.cur.put_buffer := put_buffer; { update state variables } state.cur.put_bits := put_bits;
emit_bits := TRUE; end;
{LOCAL} function flush_bits (var state : working_state) : boolean; begin if (not emit_bits(state, $7F, 7)) then { fill any partial byte with ones } begin flush_bits := FALSE; exit; end; state.cur.put_buffer := 0; { and reset bit-buffer to empty } state.cur.put_bits := 0; flush_bits := TRUE; end;
{ Encode a single block's worth of coefficients }
{LOCAL} function encode_one_block (var state : working_state; const block : JBLOCK; last_dc_val : int; dctbl : c_derived_tbl_ptr; actbl : c_derived_tbl_ptr) : boolean; var {register} temp, temp2 : int; {register} nbits : int; {register} k, r, i : int; begin { Encode the DC coefficient difference per section F.1.2.1 }
temp2 := block[0] - last_dc_val; temp := temp2;
if (temp < 0) then begin temp := -temp; { temp is abs value of input } { For a negative input, want temp2 := bitwise complement of abs(input) } { This code assumes we are on a two's complement machine } Dec(temp2); end; { Find the number of bits needed for the magnitude of the coefficient } nbits := 0; while (temp <> 0) do begin Inc(nbits); temp := temp shr 1; end;
{ Check for out-of-range coefficient values. Since we're encoding a difference, the range limit is twice as much. }
if (nbits > MAX_COEF_BITS+1) then ERREXIT(j_common_ptr(state.cinfo), JERR_BAD_DCT_COEF);
{ Emit the Huffman-coded symbol for the number of bits } if not emit_bits(state, dctbl^.ehufco[nbits], dctbl^.ehufsi[nbits]) then begin encode_one_block := FALSE; exit; end;
{ Emit that number of bits of the value, if positive, } { or the complement of its magnitude, if negative. } if (nbits <> 0) then { emit_bits rejects calls with size 0 } if not emit_bits(state, uInt(temp2), nbits) then begin encode_one_block := FALSE; exit; end;
{ Encode the AC coefficients per section F.1.2.2 }
r := 0; { r := run length of zeros }
for k := 1 to pred(DCTSIZE2) do begin temp := block[jpeg_natural_order[k]]; if (temp = 0) then begin Inc(r); end else begin { if run length > 15, must emit special run-length-16 codes ($F0) } while (r > 15) do begin if not emit_bits(state, actbl^.ehufco[$F0], actbl^.ehufsi[$F0]) then begin encode_one_block := FALSE; exit; end; Dec(r, 16); end;
temp2 := temp; if (temp < 0) then begin temp := -temp; { temp is abs value of input } { This code assumes we are on a two's complement machine } Dec(temp2); end;
{ Find the number of bits needed for the magnitude of the coefficient } nbits := 0; { there must be at least one 1 bit } repeat Inc(nbits); temp := temp shr 1; until (temp = 0);
{ Check for out-of-range coefficient values } if (nbits > MAX_COEF_BITS) then ERREXIT(j_common_ptr(state.cinfo), JERR_BAD_DCT_COEF);
{ Emit Huffman symbol for run length / number of bits } i := (r shl 4) + nbits; if not emit_bits(state, actbl^.ehufco[i], actbl^.ehufsi[i]) then begin encode_one_block := FALSE; exit; end;
{ Emit that number of bits of the value, if positive, } { or the complement of its magnitude, if negative. } if not emit_bits(state, uInt(temp2), nbits) then begin encode_one_block := FALSE; exit; end;
r := 0; end; end;
{ If the last coef(s) were zero, emit an end-of-block code } if (r > 0) then if not emit_bits(state, actbl^.ehufco[0], actbl^.ehufsi[0]) then begin encode_one_block := FALSE; exit; end;
encode_one_block := TRUE; end;
{ Emit a restart marker & resynchronize predictions. }
{LOCAL} function emit_restart (var state : working_state; restart_num : int) : boolean; var ci : int; begin if (not flush_bits(state)) then begin emit_restart := FALSE; exit; end;
{emit_byte(state, $FF, return FALSE);} { Emit a byte, return FALSE if must suspend. } state.next_output_byte^ := JOCTET ($FF); Inc(state.next_output_byte); Dec(state.free_in_buffer); if (state.free_in_buffer = 0) then if not dump_buffer(state) then begin emit_restart := FALSE; exit; end;
{emit_byte(state, JPEG_RST0 + restart_num, return FALSE);} { Emit a byte, return FALSE if must suspend. } state.next_output_byte^ := JOCTET (JPEG_RST0 + restart_num); Inc(state.next_output_byte); Dec(state.free_in_buffer); if (state.free_in_buffer = 0) then if not dump_buffer(state) then begin emit_restart := FALSE; exit; end;
{ Re-initialize DC predictions to 0 } for ci := 0 to pred(state.cinfo^.comps_in_scan) do state.cur.last_dc_val[ci] := 0;
{ The restart counter is not updated until we successfully write the MCU. }
emit_restart := TRUE; end;
{ Encode and output one MCU's worth of Huffman-compressed coefficients. }
{METHODDEF} function encode_mcu_huff (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; var entropy : huff_entropy_ptr; state : working_state; blkn, ci : int; compptr : jpeg_component_info_ptr; begin entropy := huff_entropy_ptr (cinfo^.entropy); { Load up working state } state.next_output_byte := cinfo^.dest^.next_output_byte; state.free_in_buffer := cinfo^.dest^.free_in_buffer; {ASSIGN_STATE(state.cur, entropy^.saved);} state.cur := entropy^.saved; state.cinfo := cinfo;
{ Emit restart marker if needed } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then if not emit_restart(state, entropy^.next_restart_num) then begin encode_mcu_huff := FALSE; exit; end; end;
{ Encode the MCU data blocks } for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin ci := cinfo^.MCU_membership[blkn]; compptr := cinfo^.cur_comp_info[ci]; if not encode_one_block(state, MCU_data[blkn]^[0], state.cur.last_dc_val[ci], entropy^.dc_derived_tbls[compptr^.dc_tbl_no], entropy^.ac_derived_tbls[compptr^.ac_tbl_no]) then begin encode_mcu_huff := FALSE; exit; end; { Update last_dc_val } state.cur.last_dc_val[ci] := MCU_data[blkn]^[0][0]; end;
{ Completed MCU, so update state } cinfo^.dest^.next_output_byte := state.next_output_byte; cinfo^.dest^.free_in_buffer := state.free_in_buffer; {ASSIGN_STATE(entropy^.saved, state.cur);} entropy^.saved := state.cur;
{ Update restart-interval state too } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then begin entropy^.restarts_to_go := cinfo^.restart_interval; Inc(entropy^.next_restart_num); with entropy^ do next_restart_num := next_restart_num and 7; end; Dec(entropy^.restarts_to_go); end;
encode_mcu_huff := TRUE; end;
{ Finish up at the end of a Huffman-compressed scan. }
{METHODDEF} procedure finish_pass_huff (cinfo : j_compress_ptr); var entropy : huff_entropy_ptr; state : working_state; begin entropy := huff_entropy_ptr (cinfo^.entropy);
{ Load up working state ... flush_bits needs it } state.next_output_byte := cinfo^.dest^.next_output_byte; state.free_in_buffer := cinfo^.dest^.free_in_buffer; {ASSIGN_STATE(state.cur, entropy^.saved);} state.cur := entropy^.saved; state.cinfo := cinfo;
{ Flush out the last data } if not flush_bits(state) then ERREXIT(j_common_ptr(cinfo), JERR_CANT_SUSPEND);
{ Update state } cinfo^.dest^.next_output_byte := state.next_output_byte; cinfo^.dest^.free_in_buffer := state.free_in_buffer; {ASSIGN_STATE(entropy^.saved, state.cur);} entropy^.saved := state.cur; end;
{ Huffman coding optimization.
We first scan the supplied data and count the number of uses of each symbol that is to be Huffman-coded. (This process MUST agree with the code above.) Then we build a Huffman coding tree for the observed counts. Symbols which are not needed at all for the particular image are not assigned any code, which saves space in the DHT marker as well as in the compressed data. }
{$ifdef ENTROPY_OPT_SUPPORTED}
{ Process a single block's worth of coefficients }
{LOCAL} procedure htest_one_block (cinfo : j_compress_ptr; const block : JBLOCK; last_dc_val : int; dc_counts : TLongTablePtr; ac_counts : TLongTablePtr);
var {register} temp : int; {register} nbits : int; {register} k, r : int; begin { Encode the DC coefficient difference per section F.1.2.1 } temp := block[0] - last_dc_val; if (temp < 0) then temp := -temp;
{ Find the number of bits needed for the magnitude of the coefficient } nbits := 0; while (temp <> 0) do begin Inc(nbits); temp := temp shr 1; end;
{ Check for out-of-range coefficient values. Since we're encoding a difference, the range limit is twice as much. }
if (nbits > MAX_COEF_BITS+1) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_DCT_COEF);
{ Count the Huffman symbol for the number of bits } Inc(dc_counts^[nbits]);
{ Encode the AC coefficients per section F.1.2.2 }
r := 0; { r := run length of zeros }
for k := 1 to pred(DCTSIZE2) do begin temp := block[jpeg_natural_order[k]]; if (temp = 0) then begin Inc(r); end else begin { if run length > 15, must emit special run-length-16 codes ($F0) } while (r > 15) do begin Inc(ac_counts^[$F0]); Dec(r, 16); end;
{ Find the number of bits needed for the magnitude of the coefficient } if (temp < 0) then temp := -temp;
{ Find the number of bits needed for the magnitude of the coefficient } nbits := 0; { there must be at least one 1 bit } repeat Inc(nbits); temp := temp shr 1; until (temp = 0);
{ Count Huffman symbol for run length / number of bits } Inc(ac_counts^[(r shl 4) + nbits]);
r := 0; end; end;
{ If the last coef(s) were zero, emit an end-of-block code } if (r > 0) then Inc(ac_counts^[0]); end;
{ Trial-encode one MCU's worth of Huffman-compressed coefficients. No data is actually output, so no suspension return is possible. }
{METHODDEF} function encode_mcu_gather (cinfo : j_compress_ptr; const MCU_data: array of JBLOCKROW) : boolean; var entropy : huff_entropy_ptr; blkn, ci : int; compptr : jpeg_component_info_ptr; begin entropy := huff_entropy_ptr (cinfo^.entropy); { Take care of restart intervals if needed } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then begin { Re-initialize DC predictions to 0 } for ci := 0 to pred(cinfo^.comps_in_scan) do entropy^.saved.last_dc_val[ci] := 0; { Update restart state } entropy^.restarts_to_go := cinfo^.restart_interval; end; Dec(entropy^.restarts_to_go); end;
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin ci := cinfo^.MCU_membership[blkn]; compptr := cinfo^.cur_comp_info[ci]; htest_one_block(cinfo, MCU_data[blkn]^[0], entropy^.saved.last_dc_val[ci], entropy^.dc_count_ptrs[compptr^.dc_tbl_no], entropy^.ac_count_ptrs[compptr^.ac_tbl_no]); entropy^.saved.last_dc_val[ci] := MCU_data[blkn]^[0][0]; end;
encode_mcu_gather := TRUE; end;
{ Generate the best Huffman code table for the given counts, fill htbl. Note this is also used by jcphuff.c.
The JPEG standard requires that no symbol be assigned a codeword of all one bits (so that padding bits added at the end of a compressed segment can't look like a valid code). Because of the canonical ordering of codewords, this just means that there must be an unused slot in the longest codeword length category. Section K.2 of the JPEG spec suggests reserving such a slot by pretending that symbol 256 is a valid symbol with count 1. In theory that's not optimal; giving it count zero but including it in the symbol set anyway should give a better Huffman code. But the theoretically better code actually seems to come out worse in practice, because it produces more all-ones bytes (which incur stuffed zero bytes in the final file). In any case the difference is tiny.
The JPEG standard requires Huffman codes to be no more than 16 bits long. If some symbols have a very small but nonzero probability, the Huffman tree must be adjusted to meet the code length restriction. We currently use the adjustment method suggested in JPEG section K.2. This method is *not* optimal; it may not choose the best possible limited-length code. But typically only very-low-frequency symbols will be given less-than-optimal lengths, so the code is almost optimal. Experimental comparisons against an optimal limited-length-code algorithm indicate that the difference is microscopic --- usually less than a hundredth of a percent of total size. So the extra complexity of an optimal algorithm doesn't seem worthwhile. }
{GLOBAL} procedure jpeg_gen_optimal_table (cinfo : j_compress_ptr; htbl : JHUFF_TBL_PTR; var freq : TLongTable); const MAX_CLEN = 32; { assumed maximum initial code length } var bits : array[0..MAX_CLEN+1-1] of UINT8; { bits[k] := # of symbols with code length k } codesize : array[0..257-1] of int; { codesize[k] := code length of symbol k } others : array[0..257-1] of int; { next symbol in current branch of tree } c1, c2 : int; p, i, j : int; v : long; begin { This algorithm is explained in section K.2 of the JPEG standard }
MEMZERO(@bits, SIZEOF(bits)); MEMZERO(@codesize, SIZEOF(codesize)); for i := 0 to 256 do others[i] := -1; { init links to empty }
freq[256] := 1; { make sure 256 has a nonzero count } { Including the pseudo-symbol 256 in the Huffman procedure guarantees that no real symbol is given code-value of all ones, because 256 will be placed last in the largest codeword category. }
{ Huffman's basic algorithm to assign optimal code lengths to symbols }
while TRUE do begin { Find the smallest nonzero frequency, set c1 := its symbol } { In case of ties, take the larger symbol number } c1 := -1; v := long(1000000000); for i := 0 to 256 do begin if (freq[i] <> 0) and (freq[i] <= v) then begin v := freq[i]; c1 := i; end; end;
{ Find the next smallest nonzero frequency, set c2 := its symbol } { In case of ties, take the larger symbol number } c2 := -1; v := long(1000000000); for i := 0 to 256 do begin if (freq[i] <> 0) and (freq[i] <= v) and (i <> c1) then begin v := freq[i]; c2 := i; end; end;
{ Done if we've merged everything into one frequency } if (c2 < 0) then break;
{ Else merge the two counts/trees } Inc(freq[c1], freq[c2]); freq[c2] := 0;
{ Increment the codesize of everything in c1's tree branch } Inc(codesize[c1]); while (others[c1] >= 0) do begin c1 := others[c1]; Inc(codesize[c1]); end;
others[c1] := c2; { chain c2 onto c1's tree branch }
{ Increment the codesize of everything in c2's tree branch } Inc(codesize[c2]); while (others[c2] >= 0) do begin c2 := others[c2]; Inc(codesize[c2]); end; end;
{ Now count the number of symbols of each code length } for i := 0 to 256 do begin if (codesize[i]<>0) then begin { The JPEG standard seems to think that this can't happen, } { but I'm paranoid... } if (codesize[i] > MAX_CLEN) then ERREXIT(j_common_ptr(cinfo), JERR_HUFF_CLEN_OVERFLOW);
Inc(bits[codesize[i]]); end; end;
{ JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure Huffman procedure assigned any such lengths, we must adjust the coding. Here is what the JPEG spec says about how this next bit works: Since symbols are paired for the longest Huffman code, the symbols are removed from this length category two at a time. The prefix for the pair (which is one bit shorter) is allocated to one of the pair; then, skipping the BITS entry for that prefix length, a code word from the next shortest nonzero BITS entry is converted into a prefix for two code words one bit longer. }
for i := MAX_CLEN downto 17 do begin while (bits[i] > 0) do begin j := i - 2; { find length of new prefix to be used } while (bits[j] = 0) do Dec(j);
Dec(bits[i], 2); { remove two symbols } Inc(bits[i-1]); { one goes in this length } Inc(bits[j+1], 2); { two new symbols in this length } Dec(bits[j]); { symbol of this length is now a prefix } end; end;
{ Delphi 2: FOR-loop variable 'i' may be undefined after loop } i := 16; { Nomssi: work around } { Remove the count for the pseudo-symbol 256 from the largest codelength } while (bits[i] = 0) do { find largest codelength still in use } Dec(i); Dec(bits[i]);
{ Return final symbol counts (only for lengths 0..16) } MEMCOPY(@htbl^.bits, @bits, SIZEOF(htbl^.bits));
{ Return a list of the symbols sorted by code length } { It's not real clear to me why we don't need to consider the codelength changes made above, but the JPEG spec seems to think this works. }
p := 0; for i := 1 to MAX_CLEN do begin for j := 0 to 255 do begin if (codesize[j] = i) then begin htbl^.huffval[p] := UINT8 (j); Inc(p); end; end; end;
{ Set sent_table FALSE so updated table will be written to JPEG file. } htbl^.sent_table := FALSE; end;
{ Finish up a statistics-gathering pass and create the new Huffman tables. }
{METHODDEF} procedure finish_pass_gather (cinfo : j_compress_ptr); var entropy : huff_entropy_ptr; ci, dctbl, actbl : int; compptr : jpeg_component_info_ptr; htblptr : ^JHUFF_TBL_PTR; did_dc : array[0..NUM_HUFF_TBLS-1] of boolean; did_ac : array[0..NUM_HUFF_TBLS-1] of boolean; begin entropy := huff_entropy_ptr (cinfo^.entropy);
{ It's important not to apply jpeg_gen_optimal_table more than once per table, because it clobbers the input frequency counts! }
MEMZERO(@did_dc, SIZEOF(did_dc)); MEMZERO(@did_ac, SIZEOF(did_ac));
for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; dctbl := compptr^.dc_tbl_no; actbl := compptr^.ac_tbl_no; if (not did_dc[dctbl]) then begin htblptr := @(cinfo^.dc_huff_tbl_ptrs[dctbl]); if ( htblptr^ = NIL) then htblptr^ := jpeg_alloc_huff_table(j_common_ptr(cinfo)); jpeg_gen_optimal_table(cinfo, htblptr^, entropy^.dc_count_ptrs[dctbl]^); did_dc[dctbl] := TRUE; end; if (not did_ac[actbl]) then begin htblptr := @(cinfo^.ac_huff_tbl_ptrs[actbl]); if ( htblptr^ = NIL) then htblptr^ := jpeg_alloc_huff_table(j_common_ptr(cinfo)); jpeg_gen_optimal_table(cinfo, htblptr^, entropy^.ac_count_ptrs[actbl]^); did_ac[actbl] := TRUE; end; end; end;
{$endif} { ENTROPY_OPT_SUPPORTED }
{ Module initialization routine for Huffman entropy encoding. }
{GLOBAL} procedure jinit_huff_encoder (cinfo : j_compress_ptr); var entropy : huff_entropy_ptr; i : int; begin entropy := huff_entropy_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)) ); cinfo^.entropy := jpeg_entropy_encoder_ptr (entropy); entropy^.pub.start_pass := start_pass_huff;
{ Mark tables unallocated } for i := 0 to pred(NUM_HUFF_TBLS) do begin entropy^.ac_derived_tbls[i] := NIL; entropy^.dc_derived_tbls[i] := NIL; {$ifdef ENTROPY_OPT_SUPPORTED} entropy^.ac_count_ptrs[i] := NIL; entropy^.dc_count_ptrs[i] := NIL; {$endif} end; end;
end.
|