|
|
unit imjfdctflt;
{ This file contains a floating-point implementation of the forward DCT (Discrete Cosine Transform).
This implementation should be more accurate than either of the integer DCT implementations. However, it may not give the same results on all machines because of differences in roundoff behavior. Speed will depend on the hardware's floating point capacity.
A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT on each column. Direct algorithms are also available, but they are much more complex and seem not to be any faster when reduced to code.
This implementation is based on Arai, Agui, and Nakajima's algorithm for scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in Japanese, but the algorithm is described in the Pennebaker & Mitchell JPEG textbook (see REFERENCES section in file README). The following code is based directly on figure 4-8 in P&M. While an 8-point DCT cannot be done in less than 11 multiplies, it is possible to arrange the computation so that many of the multiplies are simple scalings of the final outputs. These multiplies can then be folded into the multiplications or divisions by the JPEG quantization table entries. The AA&N method leaves only 5 multiplies and 29 adds to be done in the DCT itself. The primary disadvantage of this method is that with a fixed-point implementation, accuracy is lost due to imprecise representation of the scaled quantization values. However, that problem does not arise if we use floating point arithmetic. }
{ Original : jfdctflt.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses imjmorecfg, imjinclude, imjpeglib, imjdct; { Private declarations for DCT subsystem }
{ Perform the forward DCT on one block of samples.}
{GLOBAL} procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
implementation
{ This module is specialized to the case DCTSIZE = 8. }
{$ifndef DCTSIZE_IS_8} Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err } {$endif}
{ Perform the forward DCT on one block of samples.}
{GLOBAL} procedure jpeg_fdct_float (var data : array of FAST_FLOAT); type PWorkspace = ^TWorkspace; TWorkspace = array [0..DCTSIZE2-1] of FAST_FLOAT; var tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : FAST_FLOAT; tmp10, tmp11, tmp12, tmp13 : FAST_FLOAT; z1, z2, z3, z4, z5, z11, z13 : FAST_FLOAT; dataptr : PWorkspace; ctr : int; begin { Pass 1: process rows. }
dataptr := PWorkspace(@data); for ctr := DCTSIZE-1 downto 0 do begin tmp0 := dataptr^[0] + dataptr^[7]; tmp7 := dataptr^[0] - dataptr^[7]; tmp1 := dataptr^[1] + dataptr^[6]; tmp6 := dataptr^[1] - dataptr^[6]; tmp2 := dataptr^[2] + dataptr^[5]; tmp5 := dataptr^[2] - dataptr^[5]; tmp3 := dataptr^[3] + dataptr^[4]; tmp4 := dataptr^[3] - dataptr^[4];
{ Even part }
tmp10 := tmp0 + tmp3; { phase 2 } tmp13 := tmp0 - tmp3; tmp11 := tmp1 + tmp2; tmp12 := tmp1 - tmp2;
dataptr^[0] := tmp10 + tmp11; { phase 3 } dataptr^[4] := tmp10 - tmp11;
z1 := (tmp12 + tmp13) * ({FAST_FLOAT}(0.707106781)); { c4 } dataptr^[2] := tmp13 + z1; { phase 5 } dataptr^[6] := tmp13 - z1;
{ Odd part }
tmp10 := tmp4 + tmp5; { phase 2 } tmp11 := tmp5 + tmp6; tmp12 := tmp6 + tmp7;
{ The rotator is modified from fig 4-8 to avoid extra negations. } z5 := (tmp10 - tmp12) * ( {FAST_FLOAT}(0.382683433)); { c6 } z2 := {FAST_FLOAT}(0.541196100) * tmp10 + z5; { c2-c6 } z4 := {FAST_FLOAT}(1.306562965) * tmp12 + z5; { c2+c6 } z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
z11 := tmp7 + z3; { phase 5 } z13 := tmp7 - z3;
dataptr^[5] := z13 + z2; { phase 6 } dataptr^[3] := z13 - z2; dataptr^[1] := z11 + z4; dataptr^[7] := z11 - z4;
Inc(FAST_FLOAT_PTR(dataptr), DCTSIZE); { advance pointer to next row } end;
{ Pass 2: process columns. }
dataptr := PWorkspace(@data); for ctr := DCTSIZE-1 downto 0 do begin tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7]; tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7]; tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6]; tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6]; tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5]; tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5]; tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4]; tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
{ Even part }
tmp10 := tmp0 + tmp3; { phase 2 } tmp13 := tmp0 - tmp3; tmp11 := tmp1 + tmp2; tmp12 := tmp1 - tmp2;
dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 } dataptr^[DCTSIZE*4] := tmp10 - tmp11;
z1 := (tmp12 + tmp13) * {FAST_FLOAT} (0.707106781); { c4 } dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 } dataptr^[DCTSIZE*6] := tmp13 - z1;
{ Odd part }
tmp10 := tmp4 + tmp5; { phase 2 } tmp11 := tmp5 + tmp6; tmp12 := tmp6 + tmp7;
{ The rotator is modified from fig 4-8 to avoid extra negations. } z5 := (tmp10 - tmp12) * {FAST_FLOAT} (0.382683433); { c6 } z2 := {FAST_FLOAT} (0.541196100) * tmp10 + z5; { c2-c6 } z4 := {FAST_FLOAT} (1.306562965) * tmp12 + z5; { c2+c6 } z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
z11 := tmp7 + z3; { phase 5 } z13 := tmp7 - z3;
dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 } dataptr^[DCTSIZE*3] := z13 - z2; dataptr^[DCTSIZE*1] := z11 + z4; dataptr^[DCTSIZE*7] := z11 - z4;
Inc(FAST_FLOAT_PTR(dataptr)); { advance pointer to next column } end; end;
end.
|