|
|
unit imjdmarker;
{ This file contains routines to decode JPEG datastream markers. Most of the complexity arises from our desire to support input suspension: if not all of the data for a marker is available; we must exit back to the application. On resumption; we reprocess the marker. }
{ Original: jdmarker.c; Copyright (C) 1991-1998; Thomas G. Lane. } { History 9.7.96 Conversion to pascal started jnn 22.3.98 updated to 6b jnn }
interface
{$I imjconfig.inc}
uses imjmorecfg, imjinclude, imjdeferr, imjerror, imjcomapi, imjpeglib;
const { JPEG marker codes } M_SOF0 = $c0; M_SOF1 = $c1; M_SOF2 = $c2; M_SOF3 = $c3; M_SOF5 = $c5; M_SOF6 = $c6; M_SOF7 = $c7; M_JPG = $c8; M_SOF9 = $c9; M_SOF10 = $ca; M_SOF11 = $cb;
M_SOF13 = $cd; M_SOF14 = $ce; M_SOF15 = $cf; M_DHT = $c4; M_DAC = $cc; M_RST0 = $d0; M_RST1 = $d1; M_RST2 = $d2; M_RST3 = $d3; M_RST4 = $d4; M_RST5 = $d5; M_RST6 = $d6; M_RST7 = $d7; M_SOI = $d8; M_EOI = $d9; M_SOS = $da; M_DQT = $db; M_DNL = $dc; M_DRI = $dd; M_DHP = $de; M_EXP = $df; M_APP0 = $e0; M_APP1 = $e1; M_APP2 = $e2; M_APP3 = $e3; M_APP4 = $e4; M_APP5 = $e5; M_APP6 = $e6; M_APP7 = $e7; M_APP8 = $e8; M_APP9 = $e9; M_APP10 = $ea; M_APP11 = $eb; M_APP12 = $ec; M_APP13 = $ed; M_APP14 = $ee; M_APP15 = $ef; M_JPG0 = $f0; M_JPG13 = $fd; M_COM = $fe;
M_TEM = $01;
M_ERROR = $100;
type JPEG_MARKER = uint; { JPEG marker codes }
{ Private state }
type my_marker_ptr = ^my_marker_reader; my_marker_reader = record pub : jpeg_marker_reader; { public fields }
{ Application-overridable marker processing methods } process_COM : jpeg_marker_parser_method; process_APPn : array[0..16-1] of jpeg_marker_parser_method;
{ Limit on marker data length to save for each marker type } length_limit_COM : uint; length_limit_APPn : array[0..16-1] of uint;
{ Status of COM/APPn marker saving } cur_marker : jpeg_saved_marker_ptr; { NIL if not processing a marker } bytes_read : uint; { data bytes read so far in marker } { Note: cur_marker is not linked into marker_list until it's all read. } end;
{GLOBAL} function jpeg_resync_to_restart(cinfo : j_decompress_ptr; desired : int) : boolean; {GLOBAL} procedure jinit_marker_reader (cinfo : j_decompress_ptr);
{$ifdef SAVE_MARKERS_SUPPORTED}
{GLOBAL} procedure jpeg_save_markers (cinfo : j_decompress_ptr; marker_code : int; length_limit : uint); {$ENDIF}
{GLOBAL} procedure jpeg_set_marker_processor (cinfo : j_decompress_ptr; marker_code : int; routine : jpeg_marker_parser_method);
implementation
uses imjutils;
{ At all times, cinfo1.src.next_input_byte and .bytes_in_buffer reflect the current restart point; we update them only when we have reached a suitable place to restart if a suspension occurs. }
{ Routines to process JPEG markers.
Entry condition: JPEG marker itself has been read and its code saved in cinfo^.unread_marker; input restart point is just after the marker.
Exit: if return TRUE, have read and processed any parameters, and have updated the restart point to point after the parameters. If return FALSE, was forced to suspend before reaching end of marker parameters; restart point has not been moved. Same routine will be called again after application supplies more input data.
This approach to suspension assumes that all of a marker's parameters can fit into a single input bufferload. This should hold for "normal" markers. Some COM/APPn markers might have large parameter segments that might not fit. If we are simply dropping such a marker, we use skip_input_data to get past it, and thereby put the problem on the source manager's shoulders. If we are saving the marker's contents into memory, we use a slightly different convention: when forced to suspend, the marker processor updates the restart point to the end of what it's consumed (ie, the end of the buffer) before returning FALSE. On resumption, cinfo->unread_marker still contains the marker code, but the data source will point to the next chunk of marker data. The marker processor must retain internal state to deal with this.
Note that we don't bother to avoid duplicate trace messages if a suspension occurs within marker parameters. Other side effects require more care. }
{LOCAL} function get_soi (cinfo : j_decompress_ptr) : boolean; { Process an SOI marker } var i : int; begin {$IFDEF DEBUG} TRACEMS(j_common_ptr(cinfo), 1, JTRC_SOI); {$ENDIF}
if (cinfo^.marker^.saw_SOI) then ERREXIT(j_common_ptr(cinfo), JERR_SOI_DUPLICATE);
{ Reset all parameters that are defined to be reset by SOI }
for i := 0 to Pred(NUM_ARITH_TBLS) do with cinfo^ do begin arith_dc_L[i] := 0; arith_dc_U[i] := 1; arith_ac_K[i] := 5; end; cinfo^.restart_interval := 0;
{ Set initial assumptions for colorspace etc }
with cinfo^ do begin jpeg_color_space := JCS_UNKNOWN; CCIR601_sampling := FALSE; { Assume non-CCIR sampling??? }
saw_JFIF_marker := FALSE; JFIF_major_version := 1; { set default JFIF APP0 values } JFIF_minor_version := 1; density_unit := 0; X_density := 1; Y_density := 1; saw_Adobe_marker := FALSE; Adobe_transform := 0;
marker^.saw_SOI := TRUE; end; get_soi := TRUE; end; { get_soi }
{LOCAL} function get_sof(cinfo : j_decompress_ptr; is_prog : boolean; is_arith : boolean) : boolean; { Process a SOFn marker } var length : INT32; c, ci : int; compptr : jpeg_component_info_ptr; { Declare and initialize local copies of input pointer/count } var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; {} cinfo^.progressive_mode := is_prog; cinfo^.arith_code := is_arith;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
{ Read a byte into variable cinfo^.data_precision. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
cinfo^.data_precision := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ Read two bytes interpreted as an unsigned 16-bit integer. cinfo^.image_height should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
cinfo^.image_height := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( cinfo^.image_height, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
{ Read two bytes interpreted as an unsigned 16-bit integer. cinfo^.image_width should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
cinfo^.image_width := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( cinfo^.image_width, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
{ Read a byte into variable cinfo^.num_components. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
cinfo^.num_components := GETJOCTET(next_input_byte^); Inc(next_input_byte);
Dec(length, 8);
{$IFDEF DEBUG} TRACEMS4(j_common_ptr(cinfo), 1, JTRC_SOF, cinfo^.unread_marker, int(cinfo^.image_width), int(cinfo^.image_height), cinfo^.num_components); {$ENDIF}
if (cinfo^.marker^.saw_SOF) then ERREXIT(j_common_ptr(cinfo), JERR_SOF_DUPLICATE);
{ We don't support files in which the image height is initially specified } { as 0 and is later redefined by DNL. As long as we have to check that, } { might as well have a general sanity check. } if (cinfo^.image_height <= 0) or (cinfo^.image_width <= 0) or (cinfo^.num_components <= 0) then ERREXIT(j_common_ptr(cinfo), JERR_EMPTY_IMAGE);
if (length <> (cinfo^.num_components * 3)) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_LENGTH);
if (cinfo^.comp_info = NIL) then { do only once, even if suspend } cinfo^.comp_info := jpeg_component_info_list_ptr( cinfo^.mem^.alloc_small(j_common_ptr(cinfo), JPOOL_IMAGE, cinfo^.num_components * SIZEOF(jpeg_component_info)));
compptr := jpeg_component_info_ptr(cinfo^.comp_info); for ci := 0 to pred(cinfo^.num_components) do begin compptr^.component_index := ci;
{ Read a byte into variable compptr^.component_id. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
compptr^.component_id := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
compptr^.h_samp_factor := (c shr 4) and 15; compptr^.v_samp_factor := (c ) and 15;
{ Read a byte into variable compptr^.quant_tbl_no. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sof := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
compptr^.quant_tbl_no := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{$IFDEF DEBUG} TRACEMS4(j_common_ptr(cinfo), 1, JTRC_SOF_COMPONENT, compptr^.component_id, compptr^.h_samp_factor, compptr^.v_samp_factor, compptr^.quant_tbl_no); {$ENDIF}
Inc(compptr); end;
cinfo^.marker^.saw_SOF := TRUE;
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
get_sof := TRUE; end; { get_sof }
{LOCAL} function get_sos (cinfo : j_decompress_ptr) : boolean; { Process a SOS marker } label id_found; var length : INT32; i, ci, n, c, cc : int; compptr : jpeg_component_info_ptr; { Declare and initialize local copies of input pointer/count } var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; { Array[] of JOCTET; } bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{}
if not cinfo^.marker^.saw_SOF then ERREXIT(j_common_ptr(cinfo), JERR_SOS_NO_SOF);
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
{ Read a byte into variable n (Number of components). If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
n := GETJOCTET(next_input_byte^); { Number of components } Inc(next_input_byte);
{$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 1, JTRC_SOS, n); {$ENDIF}
if ((length <> (n * 2 + 6)) or (n < 1) or (n > MAX_COMPS_IN_SCAN)) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_LENGTH);
cinfo^.comps_in_scan := n;
{ Collect the component-spec parameters }
for i := 0 to Pred(n) do begin { Read a byte into variable cc. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
cc := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
compptr := jpeg_component_info_ptr(cinfo^.comp_info); for ci := 0 to Pred(cinfo^.num_components) do begin if (cc = compptr^.component_id) then goto id_found; Inc(compptr); end;
ERREXIT1(j_common_ptr(cinfo), JERR_BAD_COMPONENT_ID, cc);
id_found:
cinfo^.cur_comp_info[i] := compptr; compptr^.dc_tbl_no := (c shr 4) and 15; compptr^.ac_tbl_no := (c ) and 15;
{$IFDEF DEBUG} TRACEMS3(j_common_ptr(cinfo), 1, JTRC_SOS_COMPONENT, cc, compptr^.dc_tbl_no, compptr^.ac_tbl_no); {$ENDIF} end;
{ Collect the additional scan parameters Ss, Se, Ah/Al. } { Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
cinfo^.Ss := c;
{ Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
cinfo^.Se := c;
{ Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_sos := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
cinfo^.Ah := (c shr 4) and 15; cinfo^.Al := (c ) and 15;
{$IFDEF DEBUG} TRACEMS4(j_common_ptr(cinfo), 1, JTRC_SOS_PARAMS, cinfo^.Ss, cinfo^.Se, cinfo^.Ah, cinfo^.Al); {$ENDIF}
{ Prepare to scan data & restart markers } cinfo^.marker^.next_restart_num := 0;
{ Count another SOS marker } Inc( cinfo^.input_scan_number );
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
get_sos := TRUE; end; { get_sos }
{METHODDEF} function skip_variable (cinfo : j_decompress_ptr) : boolean; { Skip over an unknown or uninteresting variable-length marker } var length : INT32; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; { Array[] of JOCTET; } bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin skip_variable := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := uint(GETJOCTET(next_input_byte^)) shl 8; Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin skip_variable := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET(next_input_byte^)); Inc( next_input_byte );
Dec(length, 2);
{$IFDEF DEBUG} TRACEMS2(j_common_ptr(cinfo), 1, JTRC_MISC_MARKER, cinfo^.unread_marker, int(length)); {$ENDIF}
{ Unload the local copies --- do this only at a restart boundary } { do before skip_input_data } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
if (length > 0) then cinfo^.src^.skip_input_data(cinfo, long(length));
skip_variable := TRUE; end; { skip_variable }
{$IFDEF D_ARITH_CODING_SUPPORTED}
{LOCAL} function get_dac (cinfo : j_decompress_ptr) : boolean; { Process a DAC marker } var length : INT32; index, val : int; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dac := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dac := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
Dec(length, 2);
while (length > 0) do begin { Read a byte into variable index. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dac := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
index := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ Read a byte into variable val. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dac := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
val := GETJOCTET(next_input_byte^); Inc(next_input_byte);
Dec( length, 2);
{$IFDEF DEBUG} TRACEMS2(j_common_ptr(cinfo), 1, JTRC_DAC, index, val); {$ENDIF}
if (index < 0) or (index >= (2*NUM_ARITH_TBLS)) then ERREXIT1(j_common_ptr(cinfo) , JERR_DAC_INDEX, index);
if (index >= NUM_ARITH_TBLS) then begin { define AC table } cinfo^.arith_ac_K[index-NUM_ARITH_TBLS] := UINT8(val); end else begin { define DC table } cinfo^.arith_dc_L[index] := UINT8(val and $0F); cinfo^.arith_dc_U[index] := UINT8(val shr 4); if (cinfo^.arith_dc_L[index] > cinfo^.arith_dc_U[index]) then ERREXIT1(j_common_ptr(cinfo) , JERR_DAC_VALUE, val); end; end;
if (length <> 0) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_LENGTH);
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
get_dac := TRUE; end; { get_dac }
{$ELSE}
{LOCAL} function get_dac (cinfo : j_decompress_ptr) : boolean; begin get_dac := skip_variable(cinfo); end;
{$ENDIF}
{LOCAL} function get_dht (cinfo : j_decompress_ptr) : boolean; { Process a DHT marker } var length : INT32; bits : Array[0..17-1] of UINT8; huffval : Array[0..256-1] of UINT8; i, index, count : int; htblptr : ^JHUFF_TBL_PTR; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dht := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dht := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
Dec(length, 2);
while (length > 16) do begin { Read a byte into variable index. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dht := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
index := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 1, JTRC_DHT, index); {$ENDIF}
bits[0] := 0; count := 0; for i := 1 to 16 do begin { Read a byte into variable bits[i]. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dht := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
bits[i] := GETJOCTET(next_input_byte^); Inc(next_input_byte);
Inc( count, bits[i] ); end;
Dec( length, (1 + 16) );
{$IFDEF DEBUG} TRACEMS8(j_common_ptr(cinfo), 2, JTRC_HUFFBITS, bits[1], bits[2], bits[3], bits[4], bits[5], bits[6], bits[7], bits[8]); TRACEMS8(j_common_ptr(cinfo), 2, JTRC_HUFFBITS, bits[9], bits[10], bits[11], bits[12], bits[13], bits[14], bits[15], bits[16]); {$ENDIF}
{ Here we just do minimal validation of the counts to avoid walking off the end of our table space. jdhuff.c will check more carefully. }
if (count > 256) or (INT32(count) > length) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE);
for i := 0 to Pred(count) do begin { Read a byte into variable huffval[i]. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dht := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
huffval[i] := GETJOCTET(next_input_byte^); Inc(next_input_byte); end;
Dec( length, count );
if (index and $10)<>0 then begin { AC table definition } Dec( index, $10 ); htblptr := @cinfo^.ac_huff_tbl_ptrs[index]; end else begin { DC table definition } htblptr := @cinfo^.dc_huff_tbl_ptrs[index]; end;
if (index < 0) or (index >= NUM_HUFF_TBLS) then ERREXIT1(j_common_ptr(cinfo), JERR_DHT_INDEX, index);
if (htblptr^ = NIL) then htblptr^ := jpeg_alloc_huff_table(j_common_ptr(cinfo));
MEMCOPY(@(htblptr^)^.bits, @bits, SIZEOF((htblptr^)^.bits)); MEMCOPY(@(htblptr^)^.huffval, @huffval, SIZEOF((htblptr^)^.huffval)); end;
if (length <> 0) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_LENGTH);
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
get_dht := TRUE; end; { get_dht }
{LOCAL} function get_dqt (cinfo : j_decompress_ptr) : boolean; { Process a DQT marker } var length : INT32; n, i, prec : int; tmp : uint; quant_ptr : JQUANT_TBL_PTR; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dqt := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dqt := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
Dec( length, 2 );
while (length > 0) do begin { Read a byte into variable n. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dqt := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
n := GETJOCTET(next_input_byte^); Inc(next_input_byte);
prec := n shr 4; n := n and $0F;
{$IFDEF DEBUG} TRACEMS2(j_common_ptr(cinfo), 1, JTRC_DQT, n, prec); {$ENDIF}
if (n >= NUM_QUANT_TBLS) then ERREXIT1(j_common_ptr(cinfo) , JERR_DQT_INDEX, n);
if (cinfo^.quant_tbl_ptrs[n] = NIL) then cinfo^.quant_tbl_ptrs[n] := jpeg_alloc_quant_table(j_common_ptr(cinfo)); quant_ptr := cinfo^.quant_tbl_ptrs[n];
for i := 0 to Pred(DCTSIZE2) do begin if (prec <> 0) then begin { Read two bytes interpreted as an unsigned 16-bit integer. tmp should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dqt := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
tmp := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dqt := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( tmp, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
end else begin { Read a byte into variable tmp. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dqt := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
tmp := GETJOCTET(next_input_byte^); Inc(next_input_byte); end;
{ We convert the zigzag-order table to natural array order. } quant_ptr^.quantval[jpeg_natural_order[i]] := UINT16(tmp); end;
if (cinfo^.err^.trace_level >= 2) then begin i := 0; while i < Pred(DCTSIZE2) do begin {$IFDEF DEBUG} TRACEMS8(j_common_ptr(cinfo), 2, JTRC_QUANTVALS, quant_ptr^.quantval[i], quant_ptr^.quantval[i+1], quant_ptr^.quantval[i+2], quant_ptr^.quantval[i+3], quant_ptr^.quantval[i+4], quant_ptr^.quantval[i+5], quant_ptr^.quantval[i+6], quant_ptr^.quantval[i+7]); {$ENDIF} Inc(i, 8); end; end;
Dec( length, DCTSIZE2+1 ); if (prec <> 0) then Dec( length, DCTSIZE2 ); end;
if (length <> 0) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_LENGTH);
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
get_dqt := TRUE; end; { get_dqt }
{LOCAL} function get_dri (cinfo : j_decompress_ptr) : boolean; { Process a DRI marker } var length : INT32; tmp : uint; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dri := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dri := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
if (length <> 4) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_LENGTH);
{ Read two bytes interpreted as an unsigned 16-bit integer. tmp should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dri := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
tmp := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte ); { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_dri := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( tmp, GETJOCTET( next_input_byte^)); Inc( next_input_byte );
{$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 1, JTRC_DRI, tmp); {$ENDIF}
cinfo^.restart_interval := tmp;
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
get_dri := TRUE; end; { get_dri }
{ Routines for processing APPn and COM markers. These are either saved in memory or discarded, per application request. APP0 and APP14 are specially checked to see if they are JFIF and Adobe markers, respectively. }
const APP0_DATA_LEN = 14; { Length of interesting data in APP0 } APP14_DATA_LEN = 12; { Length of interesting data in APP14 } APPN_DATA_LEN = 14; { Must be the largest of the above!! }
{LOCAL} procedure examine_app0 (cinfo : j_decompress_ptr; var data : array of JOCTET; datalen : uint; remaining : INT32);
{ Examine first few bytes from an APP0. Take appropriate action if it is a JFIF marker. datalen is # of bytes at data[], remaining is length of rest of marker data. } {$IFDEF DEBUG} var totallen : INT32; {$ENDIF} begin {$IFDEF DEBUG} totallen := INT32(datalen) + remaining; {$ENDIF} if (datalen >= APP0_DATA_LEN) and (GETJOCTET(data[0]) = $4A) and (GETJOCTET(data[1]) = $46) and (GETJOCTET(data[2]) = $49) and (GETJOCTET(data[3]) = $46) and (GETJOCTET(data[4]) = 0) then begin { Found JFIF APP0 marker: save info } cinfo^.saw_JFIF_marker := TRUE; cinfo^.JFIF_major_version := GETJOCTET(data[5]); cinfo^.JFIF_minor_version := GETJOCTET(data[6]); cinfo^.density_unit := GETJOCTET(data[7]); cinfo^.X_density := (GETJOCTET(data[8]) shl 8) + GETJOCTET(data[9]); cinfo^.Y_density := (GETJOCTET(data[10]) shl 8) + GETJOCTET(data[11]); { Check version. Major version must be 1, anything else signals an incompatible change. (We used to treat this as an error, but now it's a nonfatal warning, because some bozo at Hijaak couldn't read the spec.) Minor version should be 0..2, but process anyway if newer. }
if (cinfo^.JFIF_major_version <> 1) then WARNMS2(j_common_ptr(cinfo), JWRN_JFIF_MAJOR, cinfo^.JFIF_major_version, cinfo^.JFIF_minor_version); { Generate trace messages } {$IFDEF DEBUG} TRACEMS5(j_common_ptr(cinfo), 1, JTRC_JFIF, cinfo^.JFIF_major_version, cinfo^.JFIF_minor_version, cinfo^.X_density, cinfo^.Y_density, cinfo^.density_unit); { Validate thumbnail dimensions and issue appropriate messages } if (GETJOCTET(data[12]) or GETJOCTET(data[13])) <> 0 then TRACEMS2(j_common_ptr(cinfo), 1, JTRC_JFIF_THUMBNAIL, GETJOCTET(data[12]), GETJOCTET(data[13])); Dec(totallen, APP0_DATA_LEN); if (totallen <> ( INT32(GETJOCTET(data[12])) * INT32(GETJOCTET(data[13])) * INT32(3) )) then TRACEMS1(j_common_ptr(cinfo), 1, JTRC_JFIF_BADTHUMBNAILSIZE, int(totallen)); {$ENDIF} end else if (datalen >= 6) and (GETJOCTET(data[0]) = $4A) and (GETJOCTET(data[1]) = $46) and (GETJOCTET(data[2]) = $58) and (GETJOCTET(data[3]) = $58) and (GETJOCTET(data[4]) = 0) then begin { Found JFIF "JFXX" extension APP0 marker } { The library doesn't actually do anything with these, but we try to produce a helpful trace message. } {$IFDEF DEBUG} case (GETJOCTET(data[5])) of $10: TRACEMS1(j_common_ptr(cinfo), 1, JTRC_THUMB_JPEG, int(totallen)); $11: TRACEMS1(j_common_ptr(cinfo), 1, JTRC_THUMB_PALETTE, int(totallen)); $13: TRACEMS1(j_common_ptr(cinfo), 1, JTRC_THUMB_RGB, int(totallen)); else TRACEMS2(j_common_ptr(cinfo), 1, JTRC_JFIF_EXTENSION, GETJOCTET(data[5]), int(totallen)); end; {$ENDIF} end else begin { Start of APP0 does not match "JFIF" or "JFXX", or too short } {$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 1, JTRC_APP0, int(totallen)); {$ENDIF} end; end;
{LOCAL} procedure examine_app14 (cinfo : j_decompress_ptr; var data : array of JOCTET; datalen : uint; remaining : INT32); { Examine first few bytes from an APP14. Take appropriate action if it is an Adobe marker. datalen is # of bytes at data[], remaining is length of rest of marker data. } var {$IFDEF DEBUG} version, flags0, flags1, {$ENDIF} transform : uint; begin if (datalen >= APP14_DATA_LEN) and (GETJOCTET(data[0]) = $41) and (GETJOCTET(data[1]) = $64) and (GETJOCTET(data[2]) = $6F) and (GETJOCTET(data[3]) = $62) and (GETJOCTET(data[4]) = $65) then begin { Found Adobe APP14 marker } {$IFDEF DEBUG} version := (GETJOCTET(data[5]) shl 8) + GETJOCTET(data[6]); flags0 := (GETJOCTET(data[7]) shl 8) + GETJOCTET(data[8]); flags1 := (GETJOCTET(data[9]) shl 8) + GETJOCTET(data[10]); {$ENDIF} transform := GETJOCTET(data[11]); {$IFDEF DEBUG} TRACEMS4(j_common_ptr(cinfo), 1, JTRC_ADOBE, version, flags0, flags1, transform); {$ENDIF} cinfo^.saw_Adobe_marker := TRUE; cinfo^.Adobe_transform := UINT8 (transform); end else begin { Start of APP14 does not match "Adobe", or too short } {$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 1, JTRC_APP14, int (datalen + remaining)); {$ENDIF} end; end;
{METHODDEF} function get_interesting_appn (cinfo : j_decompress_ptr) : boolean; { Process an APP0 or APP14 marker without saving it } var length : INT32; b : array[0..APPN_DATA_LEN-1] of JOCTET; i, numtoread: uint; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read two bytes interpreted as an unsigned 16-bit integer. length should be declared unsigned int or perhaps INT32. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_interesting_appn := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte );
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_interesting_appn := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET(next_input_byte^)); Inc( next_input_byte );
Dec(length, 2);
{ get the interesting part of the marker data } if (length >= APPN_DATA_LEN) then numtoread := APPN_DATA_LEN else if (length > 0) then numtoread := uint(length) else numtoread := 0;
if numtoread > 0 then begin for i := 0 to numtoread-1 do begin { Read a byte into b[i]. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin get_interesting_appn := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
b[i] := GETJOCTET(next_input_byte^); Inc(next_input_byte); end; end;
Dec(length, numtoread);
{ process it } case (cinfo^.unread_marker) of M_APP0: examine_app0(cinfo, b, numtoread, length); M_APP14: examine_app14(cinfo, b, numtoread, length); else { can't get here unless jpeg_save_markers chooses wrong processor } ERREXIT1(j_common_ptr(cinfo), JERR_UNKNOWN_MARKER, cinfo^.unread_marker); end;
{ skip any remaining data -- could be lots }
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
if (length > 0) then cinfo^.src^.skip_input_data(cinfo, long(length));
get_interesting_appn := TRUE; end;
{$ifdef SAVE_MARKERS_SUPPORTED}
{METHODDEF} function save_marker (cinfo : j_decompress_ptr) : boolean; { Save an APPn or COM marker into the marker list } var marker : my_marker_ptr; cur_marker : jpeg_saved_marker_ptr; bytes_read, data_length : uint; data : JOCTET_FIELD_PTR; length : INT32; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; var limit : uint; var prev : jpeg_saved_marker_ptr; begin { local copies of input pointer/count } datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
marker := my_marker_ptr(cinfo^.marker); cur_marker := marker^.cur_marker; length := 0;
if (cur_marker = NIL) then begin { begin reading a marker } { Read two bytes interpreted as an unsigned 16-bit integer. }
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin save_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
length := (uint( GETJOCTET(next_input_byte^)) shl 8); Inc( next_input_byte );
{ make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin save_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
Inc( length, GETJOCTET(next_input_byte^)); Inc( next_input_byte );
Dec(length, 2); if (length >= 0) then begin { watch out for bogus length word } { figure out how much we want to save }
if (cinfo^.unread_marker = int(M_COM)) then limit := marker^.length_limit_COM else limit := marker^.length_limit_APPn[cinfo^.unread_marker - int(M_APP0)]; if (uint(length) < limit) then limit := uint(length); { allocate and initialize the marker item } cur_marker := jpeg_saved_marker_ptr( cinfo^.mem^.alloc_large (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(jpeg_marker_struct) + limit) ); cur_marker^.next := NIL; cur_marker^.marker := UINT8 (cinfo^.unread_marker); cur_marker^.original_length := uint(length); cur_marker^.data_length := limit; { data area is just beyond the jpeg_marker_struct } cur_marker^.data := JOCTET_FIELD_PTR(cur_marker); Inc(jpeg_saved_marker_ptr(cur_marker^.data)); data := cur_marker^.data;
marker^.cur_marker := cur_marker; marker^.bytes_read := 0; bytes_read := 0; data_length := limit; end else begin { deal with bogus length word } data_length := 0; bytes_read := 0; data := NIL; end end else begin { resume reading a marker } bytes_read := marker^.bytes_read; data_length := cur_marker^.data_length; data := cur_marker^.data; Inc(data, bytes_read); end;
while (bytes_read < data_length) do begin { move the restart point to here } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
marker^.bytes_read := bytes_read; { If there's not at least one byte in buffer, suspend } if (bytes_in_buffer = 0) then begin if not datasrc^.fill_input_buffer (cinfo) then begin save_marker := FALSE; exit; end; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end;
{ Copy bytes with reasonable rapidity } while (bytes_read < data_length) and (bytes_in_buffer > 0) do begin JOCTETPTR(data)^ := next_input_byte^; Inc(JOCTETPTR(data)); Inc(next_input_byte); Dec(bytes_in_buffer); Inc(bytes_read); end; end;
{ Done reading what we want to read } if (cur_marker <> NIL) then begin { will be NIL if bogus length word } { Add new marker to end of list } if (cinfo^.marker_list = NIL) then begin cinfo^.marker_list := cur_marker end else begin prev := cinfo^.marker_list; while (prev^.next <> NIL) do prev := prev^.next; prev^.next := cur_marker; end; { Reset pointer & calc remaining data length } data := cur_marker^.data; length := cur_marker^.original_length - data_length; end; { Reset to initial state for next marker } marker^.cur_marker := NIL;
{ Process the marker if interesting; else just make a generic trace msg } case (cinfo^.unread_marker) of M_APP0: examine_app0(cinfo, data^, data_length, length); M_APP14: examine_app14(cinfo, data^, data_length, length); else {$IFDEF DEBUG} TRACEMS2(j_common_ptr(cinfo), 1, JTRC_MISC_MARKER, cinfo^.unread_marker, int(data_length + length)); {$ENDIF} end;
{ skip any remaining data -- could be lots } { do before skip_input_data } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
if (length > 0) then cinfo^.src^.skip_input_data (cinfo, long(length) );
save_marker := TRUE; end;
{$endif} { SAVE_MARKERS_SUPPORTED }
{ Find the next JPEG marker, save it in cinfo^.unread_marker. Returns FALSE if had to suspend before reaching a marker; in that case cinfo^.unread_marker is unchanged.
Note that the result might not be a valid marker code, but it will never be 0 or FF. }
{LOCAL} function next_marker (cinfo : j_decompress_ptr) : boolean; var c : int; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{while TRUE do} repeat { Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin next_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ Skip any non-FF bytes. This may look a bit inefficient, but it will not occur in a valid file. We sync after each discarded byte so that a suspending data source can discard the byte from its buffer. }
while (c <> $FF) do begin Inc(cinfo^.marker^.discarded_bytes); { Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
{ Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin next_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
end; { This loop swallows any duplicate FF bytes. Extra FFs are legal as pad bytes, so don't count them in discarded_bytes. We assume there will not be so many consecutive FF bytes as to overflow a suspending data source's input buffer. }
repeat { Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin next_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte); Until (c <> $FF); if (c <> 0) then break; { found a valid marker, exit loop } { Reach here if we found a stuffed-zero data sequence (FF/00). Discard it and loop back to try again. }
Inc(cinfo^.marker^.discarded_bytes, 2); { Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer; Until False;
if (cinfo^.marker^.discarded_bytes <> 0) then begin WARNMS2(j_common_ptr(cinfo), JWRN_EXTRANEOUS_DATA, cinfo^.marker^.discarded_bytes, c); cinfo^.marker^.discarded_bytes := 0; end;
cinfo^.unread_marker := c;
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
next_marker := TRUE; end; { next_marker }
{LOCAL} function first_marker (cinfo : j_decompress_ptr) : boolean; { Like next_marker, but used to obtain the initial SOI marker. } { For this marker, we do not allow preceding garbage or fill; otherwise, we might well scan an entire input file before realizing it ain't JPEG. If an application wants to process non-JFIF files, it must seek to the SOI before calling the JPEG library. } var c, c2 : int; var datasrc : jpeg_source_mgr_ptr; next_input_byte : JOCTETptr; bytes_in_buffer : size_t; begin datasrc := cinfo^.src; next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer;
{ Read a byte into variable c. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin first_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ Read a byte into variable c2. If must suspend, return FALSE. } { make a byte available. Note we do *not* do INPUT_SYNC before calling fill_input_buffer, but we must reload the local copies after a successful fill. } if (bytes_in_buffer = 0) then begin if (not datasrc^.fill_input_buffer(cinfo)) then begin first_marker := FALSE; exit; end; { Reload the local copies } next_input_byte := datasrc^.next_input_byte; bytes_in_buffer := datasrc^.bytes_in_buffer; end; Dec( bytes_in_buffer );
c2 := GETJOCTET(next_input_byte^); Inc(next_input_byte);
if (c <> $FF) or (c2 <> int(M_SOI)) then ERREXIT2(j_common_ptr(cinfo), JERR_NO_SOI, c, c2);
cinfo^.unread_marker := c2;
{ Unload the local copies --- do this only at a restart boundary } datasrc^.next_input_byte := next_input_byte; datasrc^.bytes_in_buffer := bytes_in_buffer;
first_marker := TRUE; end; { first_marker }
{ Read markers until SOS or EOI.
Returns same codes as are defined for jpeg_consume_input: JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. }
{METHODDEF} function read_markers (cinfo : j_decompress_ptr) : int; begin { Outer loop repeats once for each marker. } repeat { Collect the marker proper, unless we already did. } { NB: first_marker() enforces the requirement that SOI appear first. } if (cinfo^.unread_marker = 0) then begin if not cinfo^.marker^.saw_SOI then begin if not first_marker(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end; end else begin if not next_marker(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end; end; end; { At this point cinfo^.unread_marker contains the marker code and the input point is just past the marker proper, but before any parameters. A suspension will cause us to return with this state still true. }
case (cinfo^.unread_marker) of M_SOI: if not get_soi(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_SOF0, { Baseline } M_SOF1: { Extended sequential, Huffman } if not get_sof(cinfo, FALSE, FALSE) then begin read_markers := JPEG_SUSPENDED; exit; end; M_SOF2: { Progressive, Huffman } if not get_sof(cinfo, TRUE, FALSE) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_SOF9: { Extended sequential, arithmetic } if not get_sof(cinfo, FALSE, TRUE) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_SOF10: { Progressive, arithmetic } if not get_sof(cinfo, TRUE, TRUE) then begin read_markers := JPEG_SUSPENDED; exit; end;
{ Currently unsupported SOFn types } M_SOF3, { Lossless, Huffman } M_SOF5, { Differential sequential, Huffman } M_SOF6, { Differential progressive, Huffman } M_SOF7, { Differential lossless, Huffman } M_JPG, { Reserved for JPEG extensions } M_SOF11, { Lossless, arithmetic } M_SOF13, { Differential sequential, arithmetic } M_SOF14, { Differential progressive, arithmetic } M_SOF15: { Differential lossless, arithmetic } ERREXIT1(j_common_ptr(cinfo), JERR_SOF_UNSUPPORTED, cinfo^.unread_marker);
M_SOS: begin if not get_sos(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end; cinfo^.unread_marker := 0; { processed the marker } read_markers := JPEG_REACHED_SOS; exit; end;
M_EOI: begin {$IFDEF DEBUG} TRACEMS(j_common_ptr(cinfo), 1, JTRC_EOI); {$ENDIF} cinfo^.unread_marker := 0; { processed the marker } read_markers := JPEG_REACHED_EOI; exit; end;
M_DAC: if not get_dac(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_DHT: if not get_dht(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_DQT: if not get_dqt(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_DRI: if not get_dri(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_APP0, M_APP1, M_APP2, M_APP3, M_APP4, M_APP5, M_APP6, M_APP7, M_APP8, M_APP9, M_APP10, M_APP11, M_APP12, M_APP13, M_APP14, M_APP15: if not my_marker_ptr(cinfo^.marker)^. process_APPn[cinfo^.unread_marker - int(M_APP0)](cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_COM: if not my_marker_ptr(cinfo^.marker)^.process_COM (cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
M_RST0, { these are all parameterless } M_RST1, M_RST2, M_RST3, M_RST4, M_RST5, M_RST6, M_RST7, M_TEM: {$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 1, JTRC_PARMLESS_MARKER, cinfo^.unread_marker) {$ENDIF} ;
M_DNL: { Ignore DNL ... perhaps the wrong thing } if not skip_variable(cinfo) then begin read_markers := JPEG_SUSPENDED; exit; end;
else { must be DHP, EXP, JPGn, or RESn } { For now, we treat the reserved markers as fatal errors since they are likely to be used to signal incompatible JPEG Part 3 extensions. Once the JPEG 3 version-number marker is well defined, this code ought to change! } ERREXIT1(j_common_ptr(cinfo) , JERR_UNKNOWN_MARKER, cinfo^.unread_marker); end; { end of case } { Successfully processed marker, so reset state variable } cinfo^.unread_marker := 0; Until false; end; { read_markers }
{ Read a restart marker, which is expected to appear next in the datastream; if the marker is not there, take appropriate recovery action. Returns FALSE if suspension is required.
This is called by the entropy decoder after it has read an appropriate number of MCUs. cinfo^.unread_marker may be nonzero if the entropy decoder has already read a marker from the data source. Under normal conditions cinfo^.unread_marker will be reset to 0 before returning; if not reset, it holds a marker which the decoder will be unable to read past. }
{METHODDEF} function read_restart_marker (cinfo : j_decompress_ptr) :boolean; begin { Obtain a marker unless we already did. } { Note that next_marker will complain if it skips any data. } if (cinfo^.unread_marker = 0) then begin if not next_marker(cinfo) then begin read_restart_marker := FALSE; exit; end; end;
if (cinfo^.unread_marker = (int(M_RST0) + cinfo^.marker^.next_restart_num)) then begin { Normal case --- swallow the marker and let entropy decoder continue } {$IFDEF DEBUG} TRACEMS1(j_common_ptr(cinfo), 3, JTRC_RST, cinfo^.marker^.next_restart_num); {$ENDIF} cinfo^.unread_marker := 0; end else begin { Uh-oh, the restart markers have been messed up. } { Let the data source manager determine how to resync. } if not cinfo^.src^.resync_to_restart(cinfo, cinfo^.marker^.next_restart_num) then begin read_restart_marker := FALSE; exit; end; end;
{ Update next-restart state } with cinfo^.marker^ do next_restart_num := (next_restart_num + 1) and 7;
read_restart_marker := TRUE; end; { read_restart_marker }
{ This is the default resync_to_restart method for data source managers to use if they don't have any better approach. Some data source managers may be able to back up, or may have additional knowledge about the data which permits a more intelligent recovery strategy; such managers would presumably supply their own resync method.
read_restart_marker calls resync_to_restart if it finds a marker other than the restart marker it was expecting. (This code is *not* used unless a nonzero restart interval has been declared.) cinfo^.unread_marker is the marker code actually found (might be anything, except 0 or FF). The desired restart marker number (0..7) is passed as a parameter. This routine is supposed to apply whatever error recovery strategy seems appropriate in order to position the input stream to the next data segment. Note that cinfo^.unread_marker is treated as a marker appearing before the current data-source input point; usually it should be reset to zero before returning. Returns FALSE if suspension is required.
This implementation is substantially constrained by wanting to treat the input as a data stream; this means we can't back up. Therefore, we have only the following actions to work with: 1. Simply discard the marker and let the entropy decoder resume at next byte of file. 2. Read forward until we find another marker, discarding intervening data. (In theory we could look ahead within the current bufferload, without having to discard data if we don't find the desired marker. This idea is not implemented here, in part because it makes behavior dependent on buffer size and chance buffer-boundary positions.) 3. Leave the marker unread (by failing to zero cinfo^.unread_marker). This will cause the entropy decoder to process an empty data segment, inserting dummy zeroes, and then we will reprocess the marker.
#2 is appropriate if we think the desired marker lies ahead, while #3 is appropriate if the found marker is a future restart marker (indicating that we have missed the desired restart marker, probably because it got corrupted). We apply #2 or #3 if the found marker is a restart marker no more than two counts behind or ahead of the expected one. We also apply #2 if the found marker is not a legal JPEG marker code (it's certainly bogus data). If the found marker is a restart marker more than 2 counts away, we do #1 (too much risk that the marker is erroneous; with luck we will be able to resync at some future point). For any valid non-restart JPEG marker, we apply #3. This keeps us from overrunning the end of a scan. An implementation limited to single-scan files might find it better to apply #2 for markers other than EOI, since any other marker would have to be bogus data in that case. }
{GLOBAL} function jpeg_resync_to_restart(cinfo : j_decompress_ptr; desired : int) : boolean; var marker : int; action : int; begin marker := cinfo^.unread_marker; //action := 1; { never used } { Always put up a warning. } WARNMS2(j_common_ptr(cinfo), JWRN_MUST_RESYNC, marker, desired);
{ Outer loop handles repeated decision after scanning forward. } repeat if (marker < int(M_SOF0)) then action := 2 { invalid marker } else if (marker < int(M_RST0)) or (marker > int(M_RST7)) then action := 3 { valid non-restart marker } else begin if (marker = (int(M_RST0) + ((desired+1) and 7))) or (marker = (int(M_RST0) + ((desired+2) and 7))) then action := 3 { one of the next two expected restarts } else if (marker = (int(M_RST0) + ((desired-1) and 7))) or (marker = (int(M_RST0) + ((desired-2) and 7))) then action := 2 { a prior restart, so advance } else action := 1; { desired restart or too far away } end;
{$IFDEF DEBUG} TRACEMS2(j_common_ptr(cinfo), 4, JTRC_RECOVERY_ACTION, marker, action); {$ENDIF} case action of 1: { Discard marker and let entropy decoder resume processing. } begin cinfo^.unread_marker := 0; jpeg_resync_to_restart := TRUE; exit; end; 2: { Scan to the next marker, and repeat the decision loop. } begin if not next_marker(cinfo) then begin jpeg_resync_to_restart := FALSE; exit; end; marker := cinfo^.unread_marker; end; 3: { Return without advancing past this marker. } { Entropy decoder will be forced to process an empty segment. } begin jpeg_resync_to_restart := TRUE; exit; end; end; { case } Until false; { end loop } end; { jpeg_resync_to_restart }
{ Reset marker processing state to begin a fresh datastream. }
{METHODDEF} procedure reset_marker_reader (cinfo : j_decompress_ptr); var marker : my_marker_ptr; begin marker := my_marker_ptr (cinfo^.marker); with cinfo^ do begin comp_info := NIL; { until allocated by get_sof } input_scan_number := 0; { no SOS seen yet } unread_marker := 0; { no pending marker } end; marker^.pub.saw_SOI := FALSE; { set internal state too } marker^.pub.saw_SOF := FALSE; marker^.pub.discarded_bytes := 0; marker^.cur_marker := NIL; end; { reset_marker_reader }
{ Initialize the marker reader module. This is called only once, when the decompression object is created. }
{GLOBAL} procedure jinit_marker_reader (cinfo : j_decompress_ptr); var marker : my_marker_ptr; i : int; begin { Create subobject in permanent pool } marker := my_marker_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_PERMANENT, SIZEOF(my_marker_reader)) ); cinfo^.marker := jpeg_marker_reader_ptr(marker); { Initialize method pointers } marker^.pub.reset_marker_reader := reset_marker_reader; marker^.pub.read_markers := read_markers; marker^.pub.read_restart_marker := read_restart_marker; { Initialize COM/APPn processing. By default, we examine and then discard APP0 and APP14, but simply discard COM and all other APPn. }
marker^.process_COM := skip_variable; marker^.length_limit_COM := 0; for i := 0 to 16-1 do begin marker^.process_APPn[i] := skip_variable; marker^.length_limit_APPn[i] := 0; end; marker^.process_APPn[0] := get_interesting_appn; marker^.process_APPn[14] := get_interesting_appn; { Reset marker processing state } reset_marker_reader(cinfo); end; { jinit_marker_reader }
{ Control saving of COM and APPn markers into marker_list. }
{$ifdef SAVE_MARKERS_SUPPORTED}
{GLOBAL} procedure jpeg_save_markers (cinfo : j_decompress_ptr; marker_code : int; length_limit : uint); var marker : my_marker_ptr; maxlength : long; processor : jpeg_marker_parser_method; begin marker := my_marker_ptr (cinfo^.marker);
{ Length limit mustn't be larger than what we can allocate (should only be a concern in a 16-bit environment). }
maxlength := cinfo^.mem^.max_alloc_chunk - SIZEOF(jpeg_marker_struct); if (long(length_limit) > maxlength) then length_limit := uint(maxlength);
{ Choose processor routine to use. APP0/APP14 have special requirements. }
if (length_limit <> 0) then begin processor := save_marker; { If saving APP0/APP14, save at least enough for our internal use. } if (marker_code = int(M_APP0)) and (length_limit < APP0_DATA_LEN) then length_limit := APP0_DATA_LEN else if (marker_code = int(M_APP14)) and (length_limit < APP14_DATA_LEN) then length_limit := APP14_DATA_LEN; end else begin processor := skip_variable; { If discarding APP0/APP14, use our regular on-the-fly processor. } if (marker_code = int(M_APP0)) or (marker_code = int(M_APP14)) then processor := get_interesting_appn; end;
if (marker_code = int(M_COM)) then begin marker^.process_COM := processor; marker^.length_limit_COM := length_limit; end else if (marker_code >= int(M_APP0)) and (marker_code <= int(M_APP15)) then begin marker^.process_APPn[marker_code - int(M_APP0)] := processor; marker^.length_limit_APPn[marker_code - int(M_APP0)] := length_limit; end else ERREXIT1(j_common_ptr(cinfo), JERR_UNKNOWN_MARKER, marker_code); end;
{$endif} { SAVE_MARKERS_SUPPORTED }
{ Install a special processing method for COM or APPn markers. }
{GLOBAL}
procedure jpeg_set_marker_processor (cinfo : j_decompress_ptr; marker_code : int; routine : jpeg_marker_parser_method); var marker : my_marker_ptr; begin marker := my_marker_ptr (cinfo^.marker); if (marker_code = int(M_COM)) then marker^.process_COM := routine else if (marker_code >= int(M_APP0)) and (marker_code <= int(M_APP15)) then marker^.process_APPn[marker_code - int(M_APP0)] := routine else ERREXIT1(j_common_ptr(cinfo), JERR_UNKNOWN_MARKER, marker_code); end;
end.
|