|
|
unit imjdphuff;
{ This file contains Huffman entropy decoding routines for progressive JPEG.
Much of the complexity here has to do with supporting input suspension. If the data source module demands suspension, we want to be able to back up to the start of the current MCU. To do this, we copy state variables into local working storage, and update them back to the permanent storage only upon successful completion of an MCU. }
{ Original: jdphuff.c ; Copyright (C) 1995-1997, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses imjmorecfg, imjinclude, imjpeglib, imjdeferr, imjerror, imjutils, imjdhuff; { Declarations shared with jdhuff.c }
{GLOBAL} procedure jinit_phuff_decoder (cinfo : j_decompress_ptr);
implementation
{ Expanded entropy decoder object for progressive Huffman decoding.
The savable_state subrecord contains fields that change within an MCU, but must not be updated permanently until we complete the MCU. }
type savable_state = record EOBRUN : uInt; { remaining EOBs in EOBRUN } last_dc_val : array[00..MAX_COMPS_IN_SCAN-1] of int; { last DC coef for each component } end;
type phuff_entropy_ptr = ^phuff_entropy_decoder; phuff_entropy_decoder = record pub : jpeg_entropy_decoder; { public fields }
{ These fields are loaded into local variables at start of each MCU. In case of suspension, we exit WITHOUT updating them. }
bitstate : bitread_perm_state; { Bit buffer at start of MCU } saved : savable_state; { Other state at start of MCU }
{ These fields are NOT loaded into local working state. } restarts_to_go : uInt; { MCUs left in this restart interval }
{ Pointers to derived tables (these workspaces have image lifespan) } derived_tbls : array[0..NUM_HUFF_TBLS-1] of d_derived_tbl_ptr;
ac_derived_tbl : d_derived_tbl_ptr; { active table during an AC scan } end;
{ Forward declarations } {METHODDEF} function decode_mcu_DC_first (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; forward; {METHODDEF} function decode_mcu_AC_first (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; forward; {METHODDEF} function decode_mcu_DC_refine (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; forward; {METHODDEF} function decode_mcu_AC_refine (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; forward;
{ Initialize for a Huffman-compressed scan. }
{METHODDEF} procedure start_pass_phuff_decoder (cinfo : j_decompress_ptr); var entropy : phuff_entropy_ptr; is_DC_band, bad : boolean; ci, coefi, tbl : int; coef_bit_ptr : coef_bits_ptr; compptr : jpeg_component_info_ptr; var cindex : int; expected : int; begin entropy := phuff_entropy_ptr (cinfo^.entropy);
is_DC_band := (cinfo^.Ss = 0);
{ Validate scan parameters } bad := FALSE; if (is_DC_band) then begin if (cinfo^.Se <> 0) then bad := TRUE; end else begin { need not check Ss/Se < 0 since they came from unsigned bytes } if (cinfo^.Ss > cinfo^.Se) or (cinfo^.Se >= DCTSIZE2) then bad := TRUE; { AC scans may have only one component } if (cinfo^.comps_in_scan <> 1) then bad := TRUE; end; if (cinfo^.Ah <> 0) then begin { Successive approximation refinement scan: must have Al = Ah-1. } if (cinfo^.Al <> cinfo^.Ah-1) then bad := TRUE; end; if (cinfo^.Al > 13) then { need not check for < 0 } bad := TRUE; { Arguably the maximum Al value should be less than 13 for 8-bit precision, but the spec doesn't say so, and we try to be liberal about what we accept. Note: large Al values could result in out-of-range DC coefficients during early scans, leading to bizarre displays due to overflows in the IDCT math. But we won't crash. }
if (bad) then ERREXIT4(j_common_ptr(cinfo), JERR_BAD_PROGRESSION, cinfo^.Ss, cinfo^.Se, cinfo^.Ah, cinfo^.Al); { Update progression status, and verify that scan order is legal. Note that inter-scan inconsistencies are treated as warnings not fatal errors ... not clear if this is right way to behave. }
for ci := 0 to pred(cinfo^.comps_in_scan) do begin cindex := cinfo^.cur_comp_info[ci]^.component_index; coef_bit_ptr := coef_bits_ptr(@(cinfo^.coef_bits^[cindex])); {^[0] ??? Nomssi } if (not is_DC_band) and (coef_bit_ptr^[0] < 0) then { AC without prior DC scan } WARNMS2(j_common_ptr(cinfo), JWRN_BOGUS_PROGRESSION, cindex, 0); for coefi := cinfo^.Ss to cinfo^.Se do begin if (coef_bit_ptr^[coefi] < 0) then expected := 0 else expected := coef_bit_ptr^[coefi]; if (cinfo^.Ah <> expected) then WARNMS2(j_common_ptr(cinfo), JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr^[coefi] := cinfo^.Al; end; end;
{ Select MCU decoding routine } if (cinfo^.Ah = 0) then begin if (is_DC_band) then entropy^.pub.decode_mcu := decode_mcu_DC_first else entropy^.pub.decode_mcu := decode_mcu_AC_first; end else begin if (is_DC_band) then entropy^.pub.decode_mcu := decode_mcu_DC_refine else entropy^.pub.decode_mcu := decode_mcu_AC_refine; end;
for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; { Make sure requested tables are present, and compute derived tables. We may build same derived table more than once, but it's not expensive. }
if (is_DC_band) then begin if (cinfo^.Ah = 0) then begin { DC refinement needs no table } tbl := compptr^.dc_tbl_no; jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, entropy^.derived_tbls[tbl]); end; end else begin tbl := compptr^.ac_tbl_no; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, entropy^.derived_tbls[tbl]); { remember the single active table } entropy^.ac_derived_tbl := entropy^.derived_tbls[tbl]; end; { Initialize DC predictions to 0 } entropy^.saved.last_dc_val[ci] := 0; end;
{ Initialize bitread state variables } entropy^.bitstate.bits_left := 0; entropy^.bitstate.get_buffer := 0; { unnecessary, but keeps Purify quiet } entropy^.pub.insufficient_data := FALSE;
{ Initialize private state variables } entropy^.saved.EOBRUN := 0;
{ Initialize restart counter } entropy^.restarts_to_go := cinfo^.restart_interval; end;
{ Figure F.12: extend sign bit. On some machines, a shift and add will be faster than a table lookup. }
{$ifdef AVOID_TABLES}
#define HUFF_EXTEND(x,s) ((x) < (1shl((s)-1)) ? (x) + (((-1)shl(s)) + 1) : (x))
{$else}
{ #define HUFF_EXTEND(x,s) if (x) < extend_test[s] then (x) + extend_offset[s] else (x)}
const extend_test : Array[0..16-1] of int = { entry n is 2**(n-1) } ($0000, $0001, $0002, $0004, $0008, $0010, $0020, $0040, $0080, $0100, $0200, $0400, $0800, $1000, $2000, $4000);
const extend_offset : array[0..16-1] of int = { entry n is (-1 shl n) + 1 } ( 0, ((-1) shl 1) + 1, ((-1) shl 2) + 1, ((-1) shl 3) + 1, ((-1) shl 4) + 1, ((-1) shl 5) + 1, ((-1) shl 6) + 1, ((-1) shl 7) + 1, ((-1) shl 8) + 1, ((-1) shl 9) + 1, ((-1) shl 10) + 1, ((-1) shl 11) + 1, ((-1) shl 12) + 1, ((-1) shl 13) + 1, ((-1) shl 14) + 1, ((-1) shl 15) + 1 );
{$endif} { AVOID_TABLES }
{ Check for a restart marker & resynchronize decoder. return:=s FALSE if must suspend. }
{LOCAL} function process_restart (cinfo : j_decompress_ptr) : boolean; var entropy : phuff_entropy_ptr; ci : int; begin entropy := phuff_entropy_ptr (cinfo^.entropy);
{ Throw away any unused bits remaining in bit buffer; } { include any full bytes in next_marker's count of discarded bytes } Inc(cinfo^.marker^.discarded_bytes, entropy^.bitstate.bits_left div 8); entropy^.bitstate.bits_left := 0;
{ Advance past the RSTn marker } if (not cinfo^.marker^.read_restart_marker (cinfo)) then begin process_restart := FALSE; exit; end;
{ Re-initialize DC predictions to 0 } for ci := 0 to pred(cinfo^.comps_in_scan) do entropy^.saved.last_dc_val[ci] := 0; { Re-init EOB run count, too } entropy^.saved.EOBRUN := 0;
{ Reset restart counter } entropy^.restarts_to_go := cinfo^.restart_interval;
{ Reset out-of-data flag, unless read_restart_marker left us smack up against a marker. In that case we will end up treating the next data segment as empty, and we can avoid producing bogus output pixels by leaving the flag set. } if (cinfo^.unread_marker = 0) then entropy^.pub.insufficient_data := FALSE;
process_restart := TRUE; end;
{ Huffman MCU decoding. Each of these routines decodes and returns one MCU's worth of Huffman-compressed coefficients. The coefficients are reordered from zigzag order into natural array order, but are not dequantized.
The i'th block of the MCU is stored into the block pointed to by MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
We return FALSE if data source requested suspension. In that case no changes have been made to permanent state. (Exception: some output coefficients may already have been assigned. This is harmless for spectral selection, since we'll just re-assign them on the next call. Successive approximation AC refinement has to be more careful, however.) }
{ MCU decoding for DC initial scan (either spectral selection, or first pass of successive approximation). }
{METHODDEF} function decode_mcu_DC_first (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; label label1; var entropy : phuff_entropy_ptr; Al : int; {register} s, r : int; blkn, ci : int; block : JBLOCK_PTR; {BITREAD_STATE_VARS;} get_buffer : bit_buf_type ; {register} bits_left : int; {register} br_state : bitread_working_state;
state : savable_state; tbl : d_derived_tbl_ptr; compptr : jpeg_component_info_ptr; var nb, look : int; {register} begin entropy := phuff_entropy_ptr (cinfo^.entropy); Al := cinfo^.Al;
{ Process restart marker if needed; may have to suspend } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then if (not process_restart(cinfo)) then begin decode_mcu_DC_first := FALSE; exit; end; end;
{ If we've run out of data, just leave the MCU set to zeroes. This way, we return uniform gray for the remainder of the segment. }
if not entropy^.pub.insufficient_data then begin
{ Load up working state } {BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);} br_state.cinfo := cinfo; br_state.next_input_byte := cinfo^.src^.next_input_byte; br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer; get_buffer := entropy^.bitstate.get_buffer; bits_left := entropy^.bitstate.bits_left;
{ASSIGN_STATE(state, entropy^.saved);} state := entropy^.saved;
{ Outer loop handles each block in the MCU }
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin block := JBLOCK_PTR(MCU_data[blkn]); ci := cinfo^.MCU_membership[blkn]; compptr := cinfo^.cur_comp_info[ci]; tbl := entropy^.derived_tbls[compptr^.dc_tbl_no];
{ Decode a single block's worth of coefficients }
{ Section F.2.2.1: decode the DC coefficient difference } {HUFF_DECODE(s, br_state, tbl, return FALSE, label1);} if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then begin decode_mcu_DC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto label1; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := tbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := tbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; label1: s := jpeg_huff_decode(br_state,get_buffer,bits_left,tbl,nb); if (s < 0) then begin decode_mcu_DC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
if (s <> 0) then begin {CHECK_BIT_BUFFER(br_state, s, return FALSE);} if (bits_left < s) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then begin decode_mcu_DC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{r := GET_BITS(s);} Dec(bits_left, s); r := (int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);} if (r < extend_test[s]) then s := r + extend_offset[s] else s := r; end;
{ Convert DC difference to actual value, update last_dc_val } Inc(s, state.last_dc_val[ci]); state.last_dc_val[ci] := s; { Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) } block^[0] := JCOEF (s shl Al); end;
{ Completed MCU, so update state } {BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);} cinfo^.src^.next_input_byte := br_state.next_input_byte; cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer; entropy^.bitstate.get_buffer := get_buffer; entropy^.bitstate.bits_left := bits_left;
{ASSIGN_STATE(entropy^.saved, state);} entropy^.saved := state; end;
{ Account for restart interval (no-op if not using restarts) } Dec(entropy^.restarts_to_go);
decode_mcu_DC_first := TRUE; end;
{ MCU decoding for AC initial scan (either spectral selection, or first pass of successive approximation). }
{METHODDEF} function decode_mcu_AC_first (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; label label2; var entropy : phuff_entropy_ptr; Se : int; Al : int; {register} s, k, r : int; EOBRUN : uInt; block : JBLOCK_PTR; {BITREAD_STATE_VARS;} get_buffer : bit_buf_type ; {register} bits_left : int; {register} br_state : bitread_working_state;
tbl : d_derived_tbl_ptr; var nb, look : int; {register} begin entropy := phuff_entropy_ptr (cinfo^.entropy); Se := cinfo^.Se; Al := cinfo^.Al;
{ Process restart marker if needed; may have to suspend } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then if (not process_restart(cinfo)) then begin decode_mcu_AC_first := FALSE; exit; end; end;
{ If we've run out of data, just leave the MCU set to zeroes. This way, we return uniform gray for the remainder of the segment. } if not entropy^.pub.insufficient_data then begin
{ Load up working state. We can avoid loading/saving bitread state if in an EOB run. }
EOBRUN := entropy^.saved.EOBRUN; { only part of saved state we care about }
{ There is always only one block per MCU }
if (EOBRUN > 0) then { if it's a band of zeroes... } Dec(EOBRUN) { ...process it now (we do nothing) } else begin {BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);} br_state.cinfo := cinfo; br_state.next_input_byte := cinfo^.src^.next_input_byte; br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer; get_buffer := entropy^.bitstate.get_buffer; bits_left := entropy^.bitstate.bits_left;
block := JBLOCK_PTR(MCU_data[0]); tbl := entropy^.ac_derived_tbl;
k := cinfo^.Ss; while (k <= Se) do begin {HUFF_DECODE(s, br_state, tbl, return FALSE, label2);} if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then begin decode_mcu_AC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto label2; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := tbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := tbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; label2: s := jpeg_huff_decode(br_state,get_buffer,bits_left,tbl,nb); if (s < 0) then begin decode_mcu_AC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
r := s shr 4; s := s and 15; if (s <> 0) then begin Inc(k, r); {CHECK_BIT_BUFFER(br_state, s, return FALSE);} if (bits_left < s) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then begin decode_mcu_AC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{r := GET_BITS(s);} Dec(bits_left, s); r := (int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);} if (r < extend_test[s]) then s := r + extend_offset[s] else s := r;
{ Scale and output coefficient in natural (dezigzagged) order } block^[jpeg_natural_order[k]] := JCOEF (s shl Al); end else begin if (r = 15) then begin { ZRL } Inc(k, 15); { skip 15 zeroes in band } end else begin { EOBr, run length is 2^r + appended bits } EOBRUN := 1 shl r; if (r <> 0) then begin { EOBr, r > 0 } {CHECK_BIT_BUFFER(br_state, r, return FALSE);} if (bits_left < r) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,r)) then begin decode_mcu_AC_first := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{r := GET_BITS(r);} Dec(bits_left, r); r := (int(get_buffer shr bits_left)) and ( pred(1 shl r) );
Inc(EOBRUN, r); end; Dec(EOBRUN); { this band is processed at this moment } break; { force end-of-band } end; end; Inc(k); end;
{BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);} cinfo^.src^.next_input_byte := br_state.next_input_byte; cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer; entropy^.bitstate.get_buffer := get_buffer; entropy^.bitstate.bits_left := bits_left; end;
{ Completed MCU, so update state } entropy^.saved.EOBRUN := EOBRUN; { only part of saved state we care about } end;
{ Account for restart interval (no-op if not using restarts) } Dec(entropy^.restarts_to_go);
decode_mcu_AC_first := TRUE; end;
{ MCU decoding for DC successive approximation refinement scan. Note: we assume such scans can be multi-component, although the spec is not very clear on the point. }
{METHODDEF} function decode_mcu_DC_refine (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean;
var entropy : phuff_entropy_ptr; p1 : int; { 1 in the bit position being coded } blkn : int; block : JBLOCK_PTR; {BITREAD_STATE_VARS;} get_buffer : bit_buf_type ; {register} bits_left : int; {register} br_state : bitread_working_state; begin entropy := phuff_entropy_ptr (cinfo^.entropy); p1 := 1 shl cinfo^.Al;
{ Process restart marker if needed; may have to suspend } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then if (not process_restart(cinfo)) then begin decode_mcu_DC_refine := FALSE; exit; end; end;
{ Not worth the cycles to check insufficient_data here, since we will not change the data anyway if we read zeroes. }
{ Load up working state } {BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);} br_state.cinfo := cinfo; br_state.next_input_byte := cinfo^.src^.next_input_byte; br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer; get_buffer := entropy^.bitstate.get_buffer; bits_left := entropy^.bitstate.bits_left;
{ Outer loop handles each block in the MCU }
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin block := JBLOCK_PTR(MCU_data[blkn]);
{ Encoded data is simply the next bit of the two's-complement DC value } {CHECK_BIT_BUFFER(br_state, 1, return FALSE);} if (bits_left < 1) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then begin decode_mcu_DC_refine := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{if (GET_BITS(1)) then} Dec(bits_left); if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) ) <> 0 then block^[0] := block^[0] or p1; { Note: since we use OR, repeating the assignment later is safe } end;
{ Completed MCU, so update state } {BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);} cinfo^.src^.next_input_byte := br_state.next_input_byte; cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer; entropy^.bitstate.get_buffer := get_buffer; entropy^.bitstate.bits_left := bits_left;
{ Account for restart interval (no-op if not using restarts) } Dec(entropy^.restarts_to_go);
decode_mcu_DC_refine := TRUE; end;
{ MCU decoding for AC successive approximation refinement scan. }
{METHODDEF} function decode_mcu_AC_refine (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; label undoit, label3; var entropy : phuff_entropy_ptr; Se : int; p1 : int; { 1 in the bit position being coded } m1 : int; { -1 in the bit position being coded } {register} s, k, r : int; EOBRUN : uInt; block : JBLOCK_PTR; thiscoef : JCOEF_PTR; {BITREAD_STATE_VARS;} get_buffer : bit_buf_type ; {register} bits_left : int; {register} br_state : bitread_working_state;
tbl : d_derived_tbl_ptr; num_newnz : int; newnz_pos : array[0..DCTSIZE2-1] of int; var pos : int; var nb, look : int; {register} begin num_newnz := 0; block := nil;
entropy := phuff_entropy_ptr (cinfo^.entropy); Se := cinfo^.Se; p1 := 1 shl cinfo^.Al; { 1 in the bit position being coded } m1 := (-1) shl cinfo^.Al; { -1 in the bit position being coded }
{ Process restart marker if needed; may have to suspend } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then if (not process_restart(cinfo)) then begin decode_mcu_AC_refine := FALSE; exit; end; end;
{ If we've run out of data, don't modify the MCU. } if not entropy^.pub.insufficient_data then begin
{ Load up working state } {BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);} br_state.cinfo := cinfo; br_state.next_input_byte := cinfo^.src^.next_input_byte; br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer; get_buffer := entropy^.bitstate.get_buffer; bits_left := entropy^.bitstate.bits_left;
EOBRUN := entropy^.saved.EOBRUN; { only part of saved state we care about }
{ There is always only one block per MCU } block := JBLOCK_PTR(MCU_data[0]); tbl := entropy^.ac_derived_tbl;
{ If we are forced to suspend, we must undo the assignments to any newly nonzero coefficients in the block, because otherwise we'd get confused next time about which coefficients were already nonzero. But we need not undo addition of bits to already-nonzero coefficients; instead, we can test the current bit position to see if we already did it.}
num_newnz := 0;
{ initialize coefficient loop counter to start of band } k := cinfo^.Ss;
if (EOBRUN = 0) then begin while (k <= Se) do begin {HUFF_DECODE(s, br_state, tbl, goto undoit, label3);} if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then goto undoit; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto label3; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := tbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := tbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; label3: s := jpeg_huff_decode(br_state,get_buffer,bits_left,tbl,nb); if (s < 0) then goto undoit; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
r := s shr 4; s := s and 15; if (s <> 0) then begin if (s <> 1) then { size of new coef should always be 1 } WARNMS(j_common_ptr(cinfo), JWRN_HUFF_BAD_CODE); {CHECK_BIT_BUFFER(br_state, 1, goto undoit);} if (bits_left < 1) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then goto undoit; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{if (GET_BITS(1)) then} Dec(bits_left); if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) )<>0 then s := p1 { newly nonzero coef is positive } else s := m1; { newly nonzero coef is negative } end else begin if (r <> 15) then begin EOBRUN := 1 shl r; { EOBr, run length is 2^r + appended bits } if (r <> 0) then begin {CHECK_BIT_BUFFER(br_state, r, goto undoit);} if (bits_left < r) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,r)) then goto undoit; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{r := GET_BITS(r);} Dec(bits_left, r); r := (int(get_buffer shr bits_left)) and ( pred(1 shl r) );
Inc(EOBRUN, r); end; break; { rest of block is handled by EOB logic } end; { note s := 0 for processing ZRL } end; { Advance over already-nonzero coefs and r still-zero coefs, appending correction bits to the nonzeroes. A correction bit is 1 if the absolute value of the coefficient must be increased. }
repeat thiscoef :=@(block^[jpeg_natural_order[k]]); if (thiscoef^ <> 0) then begin {CHECK_BIT_BUFFER(br_state, 1, goto undoit);} if (bits_left < 1) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then goto undoit; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{if (GET_BITS(1)) then} Dec(bits_left); if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) )<>0 then begin if ((thiscoef^ and p1) = 0) then begin { do nothing if already set it } if (thiscoef^ >= 0) then Inc(thiscoef^, p1) else Inc(thiscoef^, m1); end; end; end else begin Dec(r); if (r < 0) then break; { reached target zero coefficient } end; Inc(k); until (k > Se); if (s <> 0) then begin pos := jpeg_natural_order[k]; { Output newly nonzero coefficient } block^[pos] := JCOEF (s); { Remember its position in case we have to suspend } newnz_pos[num_newnz] := pos; Inc(num_newnz); end; Inc(k); end; end;
if (EOBRUN > 0) then begin { Scan any remaining coefficient positions after the end-of-band (the last newly nonzero coefficient, if any). Append a correction bit to each already-nonzero coefficient. A correction bit is 1 if the absolute value of the coefficient must be increased. }
while (k <= Se) do begin thiscoef := @(block^[jpeg_natural_order[k]]); if (thiscoef^ <> 0) then begin {CHECK_BIT_BUFFER(br_state, 1, goto undoit);} if (bits_left < 1) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,1)) then goto undoit; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{if (GET_BITS(1)) then} Dec(bits_left); if (int(get_buffer shr bits_left)) and ( pred(1 shl 1) )<>0 then begin if ((thiscoef^ and p1) = 0) then begin { do nothing if already changed it } if (thiscoef^ >= 0) then Inc(thiscoef^, p1) else Inc(thiscoef^, m1); end; end; end; Inc(k); end; { Count one block completed in EOB run } Dec(EOBRUN); end;
{ Completed MCU, so update state } {BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);} cinfo^.src^.next_input_byte := br_state.next_input_byte; cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer; entropy^.bitstate.get_buffer := get_buffer; entropy^.bitstate.bits_left := bits_left;
entropy^.saved.EOBRUN := EOBRUN; { only part of saved state we care about } end;
{ Account for restart interval (no-op if not using restarts) } Dec(entropy^.restarts_to_go);
decode_mcu_AC_refine := TRUE; exit;
undoit: { Re-zero any output coefficients that we made newly nonzero } while (num_newnz > 0) do begin Dec(num_newnz); block^[newnz_pos[num_newnz]] := 0; end;
decode_mcu_AC_refine := FALSE; end;
{ Module initialization routine for progressive Huffman entropy decoding. }
{GLOBAL} procedure jinit_phuff_decoder (cinfo : j_decompress_ptr); var entropy : phuff_entropy_ptr; coef_bit_ptr : int_ptr; ci, i : int; begin entropy := phuff_entropy_ptr( cinfo^.mem^.alloc_small (j_common_ptr (cinfo), JPOOL_IMAGE, SIZEOF(phuff_entropy_decoder)) ); cinfo^.entropy := jpeg_entropy_decoder_ptr (entropy); entropy^.pub.start_pass := start_pass_phuff_decoder;
{ Mark derived tables unallocated } for i := 0 to pred(NUM_HUFF_TBLS) do begin entropy^.derived_tbls[i] := NIL; end;
{ Create progression status table } cinfo^.coef_bits := coef_bits_ptrrow ( cinfo^.mem^.alloc_small ( j_common_ptr (cinfo), JPOOL_IMAGE, cinfo^.num_components*DCTSIZE2*SIZEOF(int)) ); coef_bit_ptr := @cinfo^.coef_bits^[0][0]; for ci := 0 to pred(cinfo^.num_components) do for i := 0 to pred(DCTSIZE2) do begin coef_bit_ptr^ := -1; Inc(coef_bit_ptr); end; end;
end.
|