|
|
unit imjidctasm;
{ This file contains a slow-but-accurate integer implementation of the inverse DCT (Discrete Cosine Transform). In the IJG code, this routine must also perform dequantization of the input coefficients.
A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT on each row (or vice versa, but it's more convenient to emit a row at a time). Direct algorithms are also available, but they are much more complex and seem not to be any faster when reduced to code.
This implementation is based on an algorithm described in C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. The primary algorithm described there uses 11 multiplies and 29 adds. We use their alternate method with 12 multiplies and 32 adds. The advantage of this method is that no data path contains more than one multiplication; this allows a very simple and accurate implementation in scaled fixed-point arithmetic, with a minimal number of shifts. }
{ Original : jidctint.c ; Copyright (C) 1991-1996, Thomas G. Lane. } { ;------------------------------------------------------------------------- ; JIDCTINT.ASM ; 80386 protected mode assembly translation of JIDCTINT.C ; **** Optimized to all hell by Jason M. Felice (jasonf@apk.net) **** ; **** E-mail welcome **** ; ; ** This code does not make O/S calls -- use it for OS/2, Win95, WinNT, ; ** DOS prot. mode., Linux, whatever... have fun. ; ; ** Note, this code is dependant on the structure member order in the .h ; ** files for the following structures: ; -- amazingly NOT j_decompress_struct... cool. ; -- jpeg_component_info (dependant on position of dct_table element) ; ; Originally created with the /Fa option of MSVC 4.0 (why work when you ; don't have to?) ; ; (this code, when compiled is 1K bytes smaller than the optimized MSVC ; release build, not to mention 120-130 ms faster in my profile test with 1 ; small color and and 1 medium black-and-white jpeg: stats using TASM 4.0 ; and MSVC 4.0 to create a non-console app; jpeg_idct_islow accumulated ; 5,760 hits on all trials) ; ; TASM -t -ml -os jidctint.asm, jidctint.obj ;------------------------------------------------------------------------- Converted to Delphi 2.0 BASM for PasJPEG by Jacques NOMSSI NZALI <nomssi@physik.tu-chemnitz.de> October 13th 1996 * assumes Delphi "register" calling convention first 3 parameter are in EAX,EDX,ECX * register allocation revised }
interface
{$I imjconfig.inc}
uses imjmorecfg, imjinclude, imjpeglib, imjdct; { Private declarations for DCT subsystem }
{ Perform dequantization and inverse DCT on one block of coefficients. }
{GLOBAL} procedure jpeg_idct_islow (cinfo : j_decompress_ptr; compptr : jpeg_component_info_ptr; coef_block : JCOEFPTR; output_buf : JSAMPARRAY; output_col : JDIMENSION);
implementation
{ This module is specialized to the case DCTSIZE = 8. }
{$ifndef DCTSIZE_IS_8} Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err } {$endif}
{ The poop on this scaling stuff is as follows:
Each 1-D IDCT step produces outputs which are a factor of sqrt(N) larger than the true IDCT outputs. The final outputs are therefore a factor of N larger than desired; since N=8 this can be cured by a simple right shift at the end of the algorithm. The advantage of this arrangement is that we save two multiplications per 1-D IDCT, because the y0 and y4 inputs need not be divided by sqrt(N).
We have to do addition and subtraction of the integer inputs, which is no problem, and multiplication by fractional constants, which is a problem to do in integer arithmetic. We multiply all the constants by CONST_SCALE and convert them to integer constants (thus retaining CONST_BITS bits of precision in the constants). After doing a multiplication we have to divide the product by CONST_SCALE, with proper rounding, to produce the correct output. This division can be done cheaply as a right shift of CONST_BITS bits. We postpone shifting as long as possible so that partial sums can be added together with full fractional precision.
The outputs of the first pass are scaled up by PASS1_BITS bits so that they are represented to better-than-integral precision. These outputs require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word with the recommended scaling. (To scale up 12-bit sample data further, an intermediate INT32 array would be needed.)
To avoid overflow of the 32-bit intermediate results in pass 2, we must have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis shows that the values given below are the most effective. }
const CONST_BITS = 13;
{$ifdef BITS_IN_JSAMPLE_IS_8} const PASS1_BITS = 2; {$else} const PASS1_BITS = 1; { lose a little precision to avoid overflow } {$endif}
const CONST_SCALE = (INT32(1) shl CONST_BITS);
const FIX_0_298631336 = INT32(Round(CONST_SCALE * 0.298631336)); {2446} FIX_0_390180644 = INT32(Round(CONST_SCALE * 0.390180644)); {3196} FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {4433} FIX_0_765366865 = INT32(Round(CONST_SCALE * 0.765366865)); {6270} FIX_0_899976223 = INT32(Round(CONST_SCALE * 0.899976223)); {7373} FIX_1_175875602 = INT32(Round(CONST_SCALE * 1.175875602)); {9633} FIX_1_501321110 = INT32(Round(CONST_SCALE * 1.501321110)); {12299} FIX_1_847759065 = INT32(Round(CONST_SCALE * 1.847759065)); {15137} FIX_1_961570560 = INT32(Round(CONST_SCALE * 1.961570560)); {16069} FIX_2_053119869 = INT32(Round(CONST_SCALE * 2.053119869)); {16819} FIX_2_562915447 = INT32(Round(CONST_SCALE * 2.562915447)); {20995} FIX_3_072711026 = INT32(Round(CONST_SCALE * 3.072711026)); {25172}
{ for DESCALE } const ROUND_CONST = (INT32(1) shl (CONST_BITS-PASS1_BITS-1)); const ROUND_CONST_2 = (INT32(1) shl (CONST_BITS+PASS1_BITS+3-1));
{ Perform dequantization and inverse DCT on one block of coefficients. }
{GLOBAL} procedure jpeg_idct_islow (cinfo : j_decompress_ptr; compptr : jpeg_component_info_ptr; coef_block : JCOEFPTR; output_buf : JSAMPARRAY; output_col : JDIMENSION); type PWorkspace = ^TWorkspace; TWorkspace = coef_bits_field; { buffers data between passes } const coefDCTSIZE = DCTSIZE*SizeOf(JCOEF); wrkDCTSIZE = DCTSIZE*SizeOf(int); var tmp0, tmp1, tmp2, tmp3 : INT32; tmp10, tmp11, tmp12, tmp13 : INT32; z1, z2, z3, z4, z5 : INT32; var inptr : JCOEFPTR; quantptr : ISLOW_MULT_TYPE_FIELD_PTR; wsptr : PWorkspace; outptr : JSAMPROW; var range_limit : JSAMPROW; ctr : int; workspace : TWorkspace; var dcval : int; var dcval_ : JSAMPLE; asm push edi push esi push ebx
cld { The only direction we use, might as well set it now, as opposed } { to inside 2 loops. }
{ Each IDCT routine is responsible for range-limiting its results and converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could be quite far out of range if the input data is corrupt, so a bulletproof range-limiting step is required. We use a mask-and-table-lookup method to do the combined operations quickly. See the comments with prepare_range_limit_table (in jdmaster.c) for more info. }
{range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));} mov eax, [eax].jpeg_decompress_struct.sample_range_limit {eax=cinfo} add eax, (MAXJSAMPLE+1 + CENTERJSAMPLE)*(Type JSAMPLE) mov range_limit, eax
{ Pass 1: process columns from input, store into work array. } { Note results are scaled up by sqrt(8) compared to a true IDCT; } { furthermore, we scale the results by 2**PASS1_BITS. }
{inptr := coef_block;} mov esi, ecx { ecx=coef_block } {quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);} mov edi, [edx].jpeg_component_info.dct_table { edx=compptr }
{wsptr := PWorkspace(@workspace);} lea ecx, workspace
{for ctr := pred(DCTSIZE) downto 0 do begin} mov ctr, DCTSIZE @loop518: { Due to quantization, we will usually find that many of the input coefficients are zero, especially the AC terms. We can exploit this by short-circuiting the IDCT calculation for any column in which all the AC terms are zero. In that case each output is equal to the DC coefficient (with scale factor as needed). With typical images and quantization tables, half or more of the column DCT calculations can be simplified this way. }
{if ((inptr^[DCTSIZE*1]) or (inptr^[DCTSIZE*2]) or (inptr^[DCTSIZE*3]) or (inptr^[DCTSIZE*4]) or (inptr^[DCTSIZE*5]) or (inptr^[DCTSIZE*6]) or (inptr^[DCTSIZE*7]) = 0) then begin} mov eax, DWORD PTR [esi+coefDCTSIZE*1] or eax, DWORD PTR [esi+coefDCTSIZE*2] or eax, DWORD PTR [esi+coefDCTSIZE*3] mov edx, DWORD PTR [esi+coefDCTSIZE*4] or eax, edx or eax, DWORD PTR [esi+coefDCTSIZE*5] or eax, DWORD PTR [esi+coefDCTSIZE*6] or eax, DWORD PTR [esi+coefDCTSIZE*7] jne @loop520
{ AC terms all zero } {dcval := ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) * (quantptr^[DCTSIZE*0]) shl PASS1_BITS;} mov eax, DWORD PTR [esi+coefDCTSIZE*0] imul eax, DWORD PTR [edi+wrkDCTSIZE*0] shl eax, PASS1_BITS
{wsptr^[DCTSIZE*0] := dcval; wsptr^[DCTSIZE*1] := dcval; wsptr^[DCTSIZE*2] := dcval; wsptr^[DCTSIZE*3] := dcval; wsptr^[DCTSIZE*4] := dcval; wsptr^[DCTSIZE*5] := dcval; wsptr^[DCTSIZE*6] := dcval; wsptr^[DCTSIZE*7] := dcval;}
mov DWORD PTR [ecx+ wrkDCTSIZE*0], eax mov DWORD PTR [ecx+ wrkDCTSIZE*1], eax mov DWORD PTR [ecx+ wrkDCTSIZE*2], eax mov DWORD PTR [ecx+ wrkDCTSIZE*3], eax mov DWORD PTR [ecx+ wrkDCTSIZE*4], eax mov DWORD PTR [ecx+ wrkDCTSIZE*5], eax mov DWORD PTR [ecx+ wrkDCTSIZE*6], eax mov DWORD PTR [ecx+ wrkDCTSIZE*7], eax
{Inc(JCOEF_PTR(inptr)); { advance pointers to next column } {Inc(ISLOW_MULT_TYPE_PTR(quantptr)); Inc(int_ptr(wsptr)); continue;} dec ctr je @loop519
add esi, Type JCOEF add edi, Type ISLOW_MULT_TYPE add ecx, Type int { int_ptr } jmp @loop518
@loop520:
{end;}
{ Even part: reverse the even part of the forward DCT. } { The rotator is sqrt(2)*c(-6). }
{z2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*2]) * quantptr^[DCTSIZE*2]; z3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*6]) * quantptr^[DCTSIZE*6];
z1 := (z2 + z3) * INT32(FIX_0_541196100); tmp2 := z1 + INT32(z3) * INT32(- FIX_1_847759065); tmp3 := z1 + INT32(z2) * INT32(FIX_0_765366865);}
mov edx, DWORD PTR [esi+coefDCTSIZE*2] imul edx, DWORD PTR [edi+wrkDCTSIZE*2] {z2}
mov eax, DWORD PTR [esi+coefDCTSIZE*6] imul eax, DWORD PTR [edi+wrkDCTSIZE*6] {z3}
lea ebx, [eax+edx] imul ebx, FIX_0_541196100 {z1}
imul eax, (-FIX_1_847759065) add eax, ebx mov tmp2, eax
imul edx, FIX_0_765366865 add edx, ebx mov tmp3, edx
{z2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) * quantptr^[DCTSIZE*0]; z3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*4]) * quantptr^[DCTSIZE*4];}
mov edx, DWORD PTR [esi+coefDCTSIZE*4] imul edx, DWORD PTR [edi+wrkDCTSIZE*4] { z3 = edx }
mov eax, DWORD PTR [esi+coefDCTSIZE*0] imul eax, DWORD PTR [edi+wrkDCTSIZE*0] { z2 = eax }
{tmp0 := (z2 + z3) shl CONST_BITS; tmp1 := (z2 - z3) shl CONST_BITS;} lea ebx,[eax+edx] sub eax, edx shl ebx, CONST_BITS { tmp0 = ebx } shl eax, CONST_BITS { tmp1 = eax }
{tmp10 := tmp0 + tmp3; tmp13 := tmp0 - tmp3;} mov edx, tmp3 sub ebx, edx mov tmp13, ebx add edx, edx add ebx, edx mov tmp10, ebx
{tmp11 := tmp1 + tmp2; tmp12 := tmp1 - tmp2;} mov ebx, tmp2 sub eax, ebx mov tmp12, eax add ebx, ebx add eax, ebx mov tmp11, eax
{ Odd part per figure 8; the matrix is unitary and hence its transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
{tmp0 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*7]) * quantptr^[DCTSIZE*7];} mov eax, DWORD PTR [esi+coefDCTSIZE*7] imul eax, DWORD PTR [edi+wrkDCTSIZE*7] mov edx, eax { edx = tmp0 } {tmp0 := (tmp0) * INT32(FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) } imul eax, FIX_0_298631336 mov tmp0, eax
{tmp3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*1]) * quantptr^[DCTSIZE*1];} mov eax, DWORD PTR [esi+coefDCTSIZE*1] imul eax, DWORD PTR [edi+wrkDCTSIZE*1] mov tmp3, eax
{z1 := tmp0 + tmp3;} {z1 := (z1) * INT32(- FIX_0_899976223); { sqrt(2) * (c7-c3) } add eax, edx imul eax, (-FIX_0_899976223) mov z1, eax
{tmp1 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*5]) * quantptr^[DCTSIZE*5];} mov eax, DWORD PTR [esi+coefDCTSIZE*5] imul eax, DWORD PTR [edi+wrkDCTSIZE*5] mov ebx, eax { ebx = tmp1 } {tmp1 := (tmp1) * INT32(FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) } imul eax, FIX_2_053119869 mov tmp1, eax
{tmp2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*3]) * quantptr^[DCTSIZE*3];} mov eax, DWORD PTR [esi+coefDCTSIZE*3] imul eax, DWORD PTR [edi+wrkDCTSIZE*3] mov tmp2, eax
{z3 := tmp0 + tmp2;} add edx, eax { edx = z3 }
{z2 := tmp1 + tmp2;} {z2 := (z2) * INT32(- FIX_2_562915447); { sqrt(2) * (-c1-c3) } add eax, ebx imul eax, (-FIX_2_562915447) mov z2, eax
{z4 := tmp1 + tmp3;} add ebx, tmp3 { ebx = z4 }
{z5 := INT32(z3 + z4) * INT32(FIX_1_175875602); { sqrt(2) * c3 } lea eax, [edx+ebx] imul eax, FIX_1_175875602 { eax = z5 }
{z4 := (z4) * INT32(- FIX_0_390180644); { sqrt(2) * (c5-c3) } {Inc(z4, z5);} imul ebx, (-FIX_0_390180644) add ebx, eax mov z4, ebx
{z3 := (z3) * INT32(- FIX_1_961570560); { sqrt(2) * (-c3-c5) } {Inc(z3, z5);} imul edx, (-FIX_1_961570560) add eax, edx { z3 = eax }
{Inc(tmp0, z1 + z3);} mov ebx, z1 add ebx, eax add tmp0, ebx
{tmp2 := (tmp2) * INT32(FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) } {Inc(tmp2, z2 + z3);} mov ebx, tmp2 imul ebx, FIX_3_072711026 mov edx, z2 { z2 = edx } add ebx, edx add eax, ebx mov tmp2, eax
{Inc(tmp1, z2 + z4);} mov eax, z4 { z4 = eax } add edx, eax add tmp1, edx
{tmp3 := (tmp3) * INT32(FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) } {Inc(tmp3, z1 + z4);} mov edx, tmp3 imul edx, FIX_1_501321110
add edx, eax add edx, z1 { tmp3 = edx }
{ Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
{wsptr^[DCTSIZE*0] := int (DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS));} {wsptr^[DCTSIZE*7] := int (DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS));} mov eax, tmp10 add eax, ROUND_CONST lea ebx, [eax+edx] sar ebx, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*0], ebx
sub eax, edx sar eax, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*7], eax
{wsptr^[DCTSIZE*1] := int (DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS));} {wsptr^[DCTSIZE*6] := int (DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS));} mov eax, tmp11 add eax, ROUND_CONST mov edx, tmp2 lea ebx, [eax+edx] sar ebx, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*1], ebx
sub eax, edx sar eax, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*6], eax
{wsptr^[DCTSIZE*2] := int (DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS));} {wsptr^[DCTSIZE*5] := int (DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS));} mov eax, tmp12 add eax, ROUND_CONST mov edx, tmp1 lea ebx, [eax+edx] sar ebx, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*2], ebx
sub eax, edx sar eax, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*5], eax
{wsptr^[DCTSIZE*3] := int (DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS));} {wsptr^[DCTSIZE*4] := int (DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS));} mov eax, tmp13 add eax, ROUND_CONST mov edx, tmp0 lea ebx, [eax+edx] sar ebx, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*3], ebx
sub eax, edx sar eax, CONST_BITS-PASS1_BITS mov DWORD PTR [ecx+wrkDCTSIZE*4], eax
{Inc(JCOEF_PTR(inptr)); { advance pointers to next column } {Inc(ISLOW_MULT_TYPE_PTR(quantptr)); Inc(int_ptr(wsptr));} dec ctr je @loop519
add esi, Type JCOEF add edi, Type ISLOW_MULT_TYPE add ecx, Type int { int_ptr } {end;} jmp @loop518 @loop519: { Save to memory what we've registerized for the preceding loop. }
{ Pass 2: process rows from work array, store into output array. } { Note that we must descale the results by a factor of 8 == 2**3, } { and also undo the PASS1_BITS scaling. }
{wsptr := @workspace;} lea esi, workspace
{for ctr := 0 to pred(DCTSIZE) do begin} mov ctr, 0 @loop523:
{outptr := output_buf^[ctr];} mov eax, ctr mov ebx, output_buf mov edi, DWORD PTR [ebx+eax*4] { 4 = SizeOf(pointer) }
{Inc(JSAMPLE_PTR(outptr), output_col);} add edi, LongWord(output_col)
{ Rows of zeroes can be exploited in the same way as we did with columns. However, the column calculation has created many nonzero AC terms, so the simplification applies less often (typically 5% to 10% of the time). On machines with very fast multiplication, it's possible that the test takes more time than it's worth. In that case this section may be commented out. }
{$ifndef NO_ZERO_ROW_TEST} {if ((wsptr^[1]) or (wsptr^[2]) or (wsptr^[3]) or (wsptr^[4]) or (wsptr^[5]) or (wsptr^[6]) or (wsptr^[7]) = 0) then begin} mov eax, DWORD PTR [esi+4*1] or eax, DWORD PTR [esi+4*2] or eax, DWORD PTR [esi+4*3] jne @loop525 { Nomssi: early exit path may help } or eax, DWORD PTR [esi+4*4] or eax, DWORD PTR [esi+4*5] or eax, DWORD PTR [esi+4*6] or eax, DWORD PTR [esi+4*7] jne @loop525
{ AC terms all zero } {JSAMPLE(dcval_) := range_limit^[int(DESCALE(INT32(wsptr^[0]), PASS1_BITS+3)) and RANGE_MASK];} mov eax, DWORD PTR [esi+4*0] add eax, (INT32(1) shl (PASS1_BITS+3-1)) sar eax, PASS1_BITS+3 and eax, RANGE_MASK mov ebx, range_limit mov al, BYTE PTR [ebx+eax] mov ah, al
{outptr^[0] := dcval_; outptr^[1] := dcval_; outptr^[2] := dcval_; outptr^[3] := dcval_; outptr^[4] := dcval_; outptr^[5] := dcval_; outptr^[6] := dcval_; outptr^[7] := dcval_;}
stosw stosw stosw stosw
{Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row } {continue;} add esi, wrkDCTSIZE inc ctr cmp ctr, DCTSIZE jl @loop523 jmp @loop524 {end;} @loop525: {$endif}
{ Even part: reverse the even part of the forward DCT. } { The rotator is sqrt(2)*c(-6). }
{z2 := INT32 (wsptr^[2]);} mov edx, DWORD PTR [esi+4*2] { z2 = edx }
{z3 := INT32 (wsptr^[6]);} mov ecx, DWORD PTR [esi+4*6] { z3 = ecx }
{z1 := (z2 + z3) * INT32(FIX_0_541196100);} lea eax, [edx+ecx] imul eax, FIX_0_541196100 mov ebx, eax { z1 = ebx }
{tmp2 := z1 + (z3) * INT32(- FIX_1_847759065);} imul ecx, (-FIX_1_847759065) add ecx, ebx { tmp2 = ecx }
{tmp3 := z1 + (z2) * INT32(FIX_0_765366865);} imul edx, FIX_0_765366865 add ebx, edx { tmp3 = ebx }
{tmp0 := (INT32(wsptr^[0]) + INT32(wsptr^[4])) shl CONST_BITS;} {tmp1 := (INT32(wsptr^[0]) - INT32(wsptr^[4])) shl CONST_BITS;} mov edx, DWORD PTR [esi+4*4] mov eax, DWORD PTR [esi+4*0] sub eax, edx add edx, edx add edx, eax shl edx, CONST_BITS { tmp0 = edx } shl eax, CONST_BITS { tmp1 = eax }
{tmp10 := tmp0 + tmp3;} {tmp13 := tmp0 - tmp3;} sub edx, ebx mov tmp13, edx add ebx, ebx add edx, ebx mov tmp10, edx
{tmp11 := tmp1 + tmp2;} {tmp12 := tmp1 - tmp2;} lea ebx, [ecx+eax] mov tmp11, ebx sub eax, ecx mov tmp12, eax
{ Odd part per figure 8; the matrix is unitary and hence its transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
{ The following lines no longer produce code, since wsptr has been optimized to esi, it is more efficient to access these values directly. tmp0 := INT32(wsptr^[7]); tmp1 := INT32(wsptr^[5]); tmp2 := INT32(wsptr^[3]); tmp3 := INT32(wsptr^[1]); }
{z2 := tmp1 + tmp2;} {z2 := (z2) * INT32(- FIX_2_562915447); { sqrt(2) * (-c1-c3) } mov ebx, DWORD PTR [esi+4*3] { tmp2 } mov ecx, DWORD PTR [esi+4*5] { tmp1 } lea eax, [ebx+ecx] imul eax, (-FIX_2_562915447) mov z2, eax
{z3 := tmp0 + tmp2;} mov edx, DWORD PTR [esi+4*7] { tmp0 } add ebx, edx { old z3 = ebx } mov eax, ebx {z3 := (z3) * INT32(- FIX_1_961570560); { sqrt(2) * (-c3-c5) } imul eax, (-FIX_1_961570560) mov z3, eax
{z1 := tmp0 + tmp3;} {z1 := (z1) * INT32(- FIX_0_899976223); { sqrt(2) * (c7-c3) } mov eax, DWORD PTR [esi+4*1] { tmp3 } add edx, eax imul edx, (-FIX_0_899976223) { z1 = edx }
{z4 := tmp1 + tmp3;} add eax, ecx { +tmp1 } add ebx, eax { z3 + z4 = ebx } {z4 := (z4) * INT32(- FIX_0_390180644); { sqrt(2) * (c5-c3) } imul eax, (-FIX_0_390180644) { z4 = eax }
{z5 := (z3 + z4) * INT32(FIX_1_175875602); { sqrt(2) * c3 } {Inc(z3, z5);} imul ebx, FIX_1_175875602 mov ecx, z3 add ecx, ebx { ecx = z3 }
{Inc(z4, z5);} add ebx, eax { z4 = ebx }
{tmp0 := (tmp0) * INT32(FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) } {Inc(tmp0, z1 + z3);} mov eax, DWORD PTR [esi+4*7] imul eax, FIX_0_298631336 add eax, edx add eax, ecx mov tmp0, eax
{tmp1 := (tmp1) * INT32(FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) } {Inc(tmp1, z2 + z4);} mov eax, DWORD PTR [esi+4*5] imul eax, FIX_2_053119869 add eax, z2 add eax, ebx mov tmp1, eax
{tmp2 := (tmp2) * INT32(FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) } {Inc(tmp2, z2 + z3);} mov eax, DWORD PTR [esi+4*3] imul eax, FIX_3_072711026 add eax, z2 add ecx, eax { ecx = tmp2 }
{tmp3 := (tmp3) * INT32(FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) } {Inc(tmp3, z1 + z4);} mov eax, DWORD PTR [esi+4*1] imul eax, FIX_1_501321110 add eax, edx add ebx, eax { ebx = tmp3 }
{ Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
{outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK]; } {outptr^[7] := range_limit^[ int(DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
mov edx, tmp10 add edx, ROUND_CONST_2 lea eax, [ebx+edx] sub edx, ebx
shr eax, CONST_BITS+PASS1_BITS+3 and eax, RANGE_MASK mov ebx, range_limit { once for all } mov al, BYTE PTR [ebx+eax] mov [edi+0], al
shr edx, CONST_BITS+PASS1_BITS+3 and edx, RANGE_MASK mov al, BYTE PTR [ebx+edx] mov [edi+7], al
{outptr^[1] := range_limit^[ int(DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];} mov eax, tmp11 add eax, ROUND_CONST_2 lea edx, [eax+ecx] shr edx, CONST_BITS+PASS1_BITS+3 and edx, RANGE_MASK mov dl, BYTE PTR [ebx+edx] mov [edi+1], dl
{outptr^[6] := range_limit^[ int(DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];} sub eax, ecx shr eax, CONST_BITS+PASS1_BITS+3 and eax, RANGE_MASK mov al, BYTE PTR [ebx+eax] mov [edi+6], al
{outptr^[2] := range_limit^[ int(DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];} mov eax, tmp12 add eax, ROUND_CONST_2 mov ecx, tmp1 lea edx, [eax+ecx] shr edx, CONST_BITS+PASS1_BITS+3 and edx, RANGE_MASK mov dl, BYTE PTR [ebx+edx] mov [edi+2], dl
{outptr^[5] := range_limit^[ int(DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];} sub eax, ecx shr eax, CONST_BITS+PASS1_BITS+3 and eax, RANGE_MASK mov al, BYTE PTR [ebx+eax] mov [edi+5], al
{outptr^[3] := range_limit^[ int(DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];} mov eax, tmp13 add eax, ROUND_CONST_2 mov ecx, tmp0 lea edx, [eax+ecx] shr edx, CONST_BITS+PASS1_BITS+3 and edx, RANGE_MASK mov dl, BYTE PTR [ebx+edx] mov [edi+3], dl
{outptr^[4] := range_limit^[ int(DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];} sub eax, ecx shr eax, CONST_BITS+PASS1_BITS+3 and eax, RANGE_MASK mov al, BYTE PTR [ebx+eax] mov [edi+4], al
{Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row } add esi, wrkDCTSIZE add edi, DCTSIZE
{end;} inc ctr cmp ctr, DCTSIZE jl @loop523
@loop524: @loop496: pop ebx pop esi pop edi end;
end.
|