|
|
unit imjdhuff;
{ This file contains declarations for Huffman entropy decoding routines that are shared between the sequential decoder (jdhuff.c) and the progressive decoder (jdphuff.c). No other modules need to see these. }
{ This file contains Huffman entropy decoding routines.
Much of the complexity here has to do with supporting input suspension. If the data source module demands suspension, we want to be able to back up to the start of the current MCU. To do this, we copy state variables into local working storage, and update them back to the permanent storage only upon successful completion of an MCU. }
{ Original: jdhuff.h+jdhuff.c; Copyright (C) 1991-1997, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses imjmorecfg, imjinclude, imjdeferr, imjerror, imjutils, imjpeglib;
{ Declarations shared with jdphuff.c }
{ Derived data constructed for each Huffman table }
const HUFF_LOOKAHEAD = 8; { # of bits of lookahead }
type d_derived_tbl_ptr = ^d_derived_tbl; d_derived_tbl = record { Basic tables: (element [0] of each array is unused) } maxcode : array[0..18-1] of INT32; { largest code of length k (-1 if none) } { (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) } valoffset : array[0..17-1] of INT32; { huffval[] offset for codes of length k } { valoffset[k] = huffval[] index of 1st symbol of code length k, less the smallest code of length k; so given a code of length k, the corresponding symbol is huffval[code + valoffset[k]] }
{ Link to public Huffman table (needed only in jpeg_huff_decode) } pub : JHUFF_TBL_PTR;
{ Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of the input data stream. If the next Huffman code is no more than HUFF_LOOKAHEAD bits long, we can obtain its length and the corresponding symbol directly from these tables. }
look_nbits : array[0..(1 shl HUFF_LOOKAHEAD)-1] of int; { # bits, or 0 if too long } look_sym : array[0..(1 shl HUFF_LOOKAHEAD)-1] of UINT8; { symbol, or unused } end;
{ Fetching the next N bits from the input stream is a time-critical operation for the Huffman decoders. We implement it with a combination of inline macros and out-of-line subroutines. Note that N (the number of bits demanded at one time) never exceeds 15 for JPEG use.
We read source bytes into get_buffer and dole out bits as needed. If get_buffer already contains enough bits, they are fetched in-line by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer as full as possible (not just to the number of bits needed; this prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains at least the requested number of bits --- dummy zeroes are inserted if necessary. }
type bit_buf_type = INT32 ; { type of bit-extraction buffer } const BIT_BUF_SIZE = 32; { size of buffer in bits }
{ If long is > 32 bits on your machine, and shifting/masking longs is reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE appropriately should be a win. Unfortunately we can't define the size with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) because not all machines measure sizeof in 8-bit bytes. }
type bitread_perm_state = record { Bitreading state saved across MCUs } get_buffer : bit_buf_type; { current bit-extraction buffer } bits_left : int; { # of unused bits in it } end;
type bitread_working_state = record { Bitreading working state within an MCU } { current data source location } { We need a copy, rather than munging the original, in case of suspension } next_input_byte : JOCTETptr; { => next byte to read from source } bytes_in_buffer : size_t; { # of bytes remaining in source buffer } { Bit input buffer --- note these values are kept in register variables, not in this struct, inside the inner loops. }
get_buffer : bit_buf_type; { current bit-extraction buffer } bits_left : int; { # of unused bits in it } { Pointer needed by jpeg_fill_bit_buffer } cinfo : j_decompress_ptr; { back link to decompress master record } end;
{ Module initialization routine for Huffman entropy decoding. }
{GLOBAL} procedure jinit_huff_decoder (cinfo : j_decompress_ptr);
{GLOBAL} function jpeg_huff_decode(var state : bitread_working_state; get_buffer : bit_buf_type; {register} bits_left : int; {register} htbl : d_derived_tbl_ptr; min_bits : int) : int;
{ Compute the derived values for a Huffman table. Note this is also used by jdphuff.c. }
{GLOBAL} procedure jpeg_make_d_derived_tbl (cinfo : j_decompress_ptr; isDC : boolean; tblno : int; var pdtbl : d_derived_tbl_ptr);
{ Load up the bit buffer to a depth of at least nbits }
function jpeg_fill_bit_buffer (var state : bitread_working_state; get_buffer : bit_buf_type; {register} bits_left : int; {register} nbits : int) : boolean;
implementation
{$IFDEF MACRO}
{ Macros to declare and load/save bitread local variables. } {$define BITREAD_STATE_VARS} get_buffer : bit_buf_type ; {register} bits_left : int; {register} br_state : bitread_working_state;
{$define BITREAD_LOAD_STATE(cinfop,permstate)} br_state.cinfo := cinfop; br_state.next_input_byte := cinfop^.src^.next_input_byte; br_state.bytes_in_buffer := cinfop^.src^.bytes_in_buffer; get_buffer := permstate.get_buffer; bits_left := permstate.bits_left;
{$define BITREAD_SAVE_STATE(cinfop,permstate) } cinfop^.src^.next_input_byte := br_state.next_input_byte; cinfop^.src^.bytes_in_buffer := br_state.bytes_in_buffer; permstate.get_buffer := get_buffer; permstate.bits_left := bits_left;
{ These macros provide the in-line portion of bit fetching. Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer before using GET_BITS, PEEK_BITS, or DROP_BITS. The variables get_buffer and bits_left are assumed to be locals, but the state struct might not be (jpeg_huff_decode needs this). CHECK_BIT_BUFFER(state,n,action); Ensure there are N bits in get_buffer; if suspend, take action. val = GET_BITS(n); Fetch next N bits. val = PEEK_BITS(n); Fetch next N bits without removing them from the buffer. DROP_BITS(n); Discard next N bits. The value N should be a simple variable, not an expression, because it is evaluated multiple times. }
{$define CHECK_BIT_BUFFER(state,nbits,action)} if (bits_left < (nbits)) then begin if (not jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) then begin action; exit; end; get_buffer := state.get_buffer; bits_left := state.bits_left; end;
{$define GET_BITS(nbits)} Dec(bits_left, (nbits)); ( (int(get_buffer shr bits_left)) and ( pred(1 shl (nbits)) ) )
{$define PEEK_BITS(nbits)} int(get_buffer shr (bits_left - (nbits))) and pred(1 shl (nbits))
{$define DROP_BITS(nbits)} Dec(bits_left, nbits);
{ Code for extracting next Huffman-coded symbol from input bit stream. Again, this is time-critical and we make the main paths be macros.
We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits without looping. Usually, more than 95% of the Huffman codes will be 8 or fewer bits long. The few overlength codes are handled with a loop, which need not be inline code.
Notes about the HUFF_DECODE macro: 1. Near the end of the data segment, we may fail to get enough bits for a lookahead. In that case, we do it the hard way. 2. If the lookahead table contains no entry, the next code must be more than HUFF_LOOKAHEAD bits long. 3. jpeg_huff_decode returns -1 if forced to suspend. }
macro HUFF_DECODE(s,br_state,htbl,return FALSE,slowlabel); label showlabel; var nb, look : int; {register} begin if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto slowlabel; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := htbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := htbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; slowlabel: s := jpeg_huff_decode(br_state,get_buffer,bits_left,htbl,nb)); if (s < 0) then begin result := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end; end;
{$ENDIF} {MACRO}
{ Expanded entropy decoder object for Huffman decoding.
The savable_state subrecord contains fields that change within an MCU, but must not be updated permanently until we complete the MCU. }
type savable_state = record last_dc_val : array[0..MAX_COMPS_IN_SCAN-1] of int; { last DC coef for each component } end;
type huff_entropy_ptr = ^huff_entropy_decoder; huff_entropy_decoder = record pub : jpeg_entropy_decoder; { public fields }
{ These fields are loaded into local variables at start of each MCU. In case of suspension, we exit WITHOUT updating them. }
bitstate : bitread_perm_state; { Bit buffer at start of MCU } saved : savable_state; { Other state at start of MCU }
{ These fields are NOT loaded into local working state. } restarts_to_go : uInt; { MCUs left in this restart interval }
{ Pointers to derived tables (these workspaces have image lifespan) } dc_derived_tbls : array[0..NUM_HUFF_TBLS] of d_derived_tbl_ptr; ac_derived_tbls : array[0..NUM_HUFF_TBLS] of d_derived_tbl_ptr;
{ Precalculated info set up by start_pass for use in decode_mcu: }
{ Pointers to derived tables to be used for each block within an MCU } dc_cur_tbls : array[0..D_MAX_BLOCKS_IN_MCU-1] of d_derived_tbl_ptr; ac_cur_tbls : array[0..D_MAX_BLOCKS_IN_MCU-1] of d_derived_tbl_ptr; { Whether we care about the DC and AC coefficient values for each block } dc_needed : array[0..D_MAX_BLOCKS_IN_MCU-1] of boolean; ac_needed : array[0..D_MAX_BLOCKS_IN_MCU-1] of boolean; end;
{ Initialize for a Huffman-compressed scan. }
{METHODDEF} procedure start_pass_huff_decoder (cinfo : j_decompress_ptr); var entropy : huff_entropy_ptr; ci, blkn, dctbl, actbl : int; compptr : jpeg_component_info_ptr; begin entropy := huff_entropy_ptr (cinfo^.entropy);
{ Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. This ought to be an error condition, but we make it a warning because there are some baseline files out there with all zeroes in these bytes. }
if (cinfo^.Ss <> 0) or (cinfo^.Se <> DCTSIZE2-1) or (cinfo^.Ah <> 0) or (cinfo^.Al <> 0) then WARNMS(j_common_ptr(cinfo), JWRN_NOT_SEQUENTIAL);
for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; dctbl := compptr^.dc_tbl_no; actbl := compptr^.ac_tbl_no; { Compute derived values for Huffman tables } { We may do this more than once for a table, but it's not expensive } jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, entropy^.dc_derived_tbls[dctbl]); jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, entropy^.ac_derived_tbls[actbl]); { Initialize DC predictions to 0 } entropy^.saved.last_dc_val[ci] := 0; end;
{ Precalculate decoding info for each block in an MCU of this scan } for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin ci := cinfo^.MCU_membership[blkn]; compptr := cinfo^.cur_comp_info[ci]; { Precalculate which table to use for each block } entropy^.dc_cur_tbls[blkn] := entropy^.dc_derived_tbls[compptr^.dc_tbl_no]; entropy^.ac_cur_tbls[blkn] := entropy^.ac_derived_tbls[compptr^.ac_tbl_no]; { Decide whether we really care about the coefficient values } if (compptr^.component_needed) then begin entropy^.dc_needed[blkn] := TRUE; { we don't need the ACs if producing a 1/8th-size image } entropy^.ac_needed[blkn] := (compptr^.DCT_scaled_size > 1); end else begin entropy^.ac_needed[blkn] := FALSE; entropy^.dc_needed[blkn] := FALSE; end; end;
{ Initialize bitread state variables } entropy^.bitstate.bits_left := 0; entropy^.bitstate.get_buffer := 0; { unnecessary, but keeps Purify quiet } entropy^.pub.insufficient_data := FALSE;
{ Initialize restart counter } entropy^.restarts_to_go := cinfo^.restart_interval; end;
{ Compute the derived values for a Huffman table. This routine also performs some validation checks on the table.
Note this is also used by jdphuff.c. }
{GLOBAL} procedure jpeg_make_d_derived_tbl (cinfo : j_decompress_ptr; isDC : boolean; tblno : int; var pdtbl : d_derived_tbl_ptr); var htbl : JHUFF_TBL_PTR; dtbl : d_derived_tbl_ptr; p, i, l, si, numsymbols : int; lookbits, ctr : int; huffsize : array[0..257-1] of byte; huffcode : array[0..257-1] of uInt; code : uInt; var sym : int; begin { Note that huffsize[] and huffcode[] are filled in code-length order, paralleling the order of the symbols themselves in htbl^.huffval[]. }
{ Find the input Huffman table } if (tblno < 0) or (tblno >= NUM_HUFF_TBLS) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tblno); if isDC then htbl := cinfo^.dc_huff_tbl_ptrs[tblno] else htbl := cinfo^.ac_huff_tbl_ptrs[tblno]; if (htbl = NIL) then ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tblno);
{ Allocate a workspace if we haven't already done so. } if (pdtbl = NIL) then pdtbl := d_derived_tbl_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(d_derived_tbl)) ); dtbl := pdtbl; dtbl^.pub := htbl; { fill in back link }
{ Figure C.1: make table of Huffman code length for each symbol }
p := 0; for l := 1 to 16 do begin i := int(htbl^.bits[l]); if (i < 0) or (p + i > 256) then { protect against table overrun } ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE); while (i > 0) do begin huffsize[p] := byte(l); Inc(p); Dec(i); end; end; huffsize[p] := 0; numsymbols := p;
{ Figure C.2: generate the codes themselves } { We also validate that the counts represent a legal Huffman code tree. }
code := 0; si := huffsize[0]; p := 0; while (huffsize[p] <> 0) do begin while (( int (huffsize[p]) ) = si) do begin huffcode[p] := code; Inc(p); Inc(code); end; { code is now 1 more than the last code used for codelength si; but it must still fit in si bits, since no code is allowed to be all ones. }
if (INT32(code) >= (INT32(1) shl si)) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE);
code := code shl 1; Inc(si); end;
{ Figure F.15: generate decoding tables for bit-sequential decoding }
p := 0; for l := 1 to 16 do begin if (htbl^.bits[l] <> 0) then begin { valoffset[l] = huffval[] index of 1st symbol of code length l, minus the minimum code of length l }
dtbl^.valoffset[l] := INT32(p) - INT32(huffcode[p]); Inc(p, htbl^.bits[l]); dtbl^.maxcode[l] := huffcode[p-1]; { maximum code of length l } end else begin dtbl^.maxcode[l] := -1; { -1 if no codes of this length } end; end; dtbl^.maxcode[17] := long($FFFFF); { ensures jpeg_huff_decode terminates }
{ Compute lookahead tables to speed up decoding. First we set all the table entries to 0, indicating "too long"; then we iterate through the Huffman codes that are short enough and fill in all the entries that correspond to bit sequences starting with that code. }
MEMZERO(@dtbl^.look_nbits, SIZEOF(dtbl^.look_nbits));
p := 0; for l := 1 to HUFF_LOOKAHEAD do begin for i := 1 to int (htbl^.bits[l]) do begin { l := current code's length, p := its index in huffcode[] & huffval[]. } { Generate left-justified code followed by all possible bit sequences } lookbits := huffcode[p] shl (HUFF_LOOKAHEAD-l); for ctr := pred(1 shl (HUFF_LOOKAHEAD-l)) downto 0 do begin dtbl^.look_nbits[lookbits] := l; dtbl^.look_sym[lookbits] := htbl^.huffval[p]; Inc(lookbits); end; Inc(p); end; end;
{ Validate symbols as being reasonable. For AC tables, we make no check, but accept all byte values 0..255. For DC tables, we require the symbols to be in range 0..15. (Tighter bounds could be applied depending on the data depth and mode, but this is sufficient to ensure safe decoding.) }
if (isDC) then begin for i := 0 to pred(numsymbols) do begin sym := htbl^.huffval[i]; if (sym < 0) or (sym > 15) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_HUFF_TABLE); end; end; end;
{ Out-of-line code for bit fetching (shared with jdphuff.c). See jdhuff.h for info about usage. Note: current values of get_buffer and bits_left are passed as parameters, but are returned in the corresponding fields of the state struct.
On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width of get_buffer to be used. (On machines with wider words, an even larger buffer could be used.) However, on some machines 32-bit shifts are quite slow and take time proportional to the number of places shifted. (This is true with most PC compilers, for instance.) In this case it may be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the average shift distance at the cost of more calls to jpeg_fill_bit_buffer. }
{$ifdef SLOW_SHIFT_32} const MIN_GET_BITS = 15; { minimum allowable value } {$else} const MIN_GET_BITS = (BIT_BUF_SIZE-7); {$endif}
{GLOBAL} function jpeg_fill_bit_buffer (var state : bitread_working_state; {register} get_buffer : bit_buf_type; {register} bits_left : int; nbits : int) : boolean; label no_more_bytes; { Load up the bit buffer to a depth of at least nbits } var { Copy heavily used state fields into locals (hopefully registers) } {register} next_input_byte : {const} JOCTETptr; {register} bytes_in_buffer : size_t; var {register} c : int; var cinfo : j_decompress_ptr; begin next_input_byte := state.next_input_byte; bytes_in_buffer := state.bytes_in_buffer; cinfo := state.cinfo;
{ Attempt to load at least MIN_GET_BITS bits into get_buffer. } { (It is assumed that no request will be for more than that many bits.) } { We fail to do so only if we hit a marker or are forced to suspend. }
if (cinfo^.unread_marker = 0) then { cannot advance past a marker } begin while (bits_left < MIN_GET_BITS) do begin { Attempt to read a byte } if (bytes_in_buffer = 0) then begin if not cinfo^.src^.fill_input_buffer(cinfo) then begin jpeg_fill_bit_buffer := FALSE; exit; end; next_input_byte := cinfo^.src^.next_input_byte; bytes_in_buffer := cinfo^.src^.bytes_in_buffer; end; Dec(bytes_in_buffer); c := GETJOCTET(next_input_byte^); Inc(next_input_byte);
{ If it's $FF, check and discard stuffed zero byte } if (c = $FF) then begin { Loop here to discard any padding FF's on terminating marker, so that we can save a valid unread_marker value. NOTE: we will accept multiple FF's followed by a 0 as meaning a single FF data byte. This data pattern is not valid according to the standard. }
repeat if (bytes_in_buffer = 0) then begin if (not state.cinfo^.src^.fill_input_buffer (state.cinfo)) then begin jpeg_fill_bit_buffer := FALSE; exit; end; next_input_byte := state.cinfo^.src^.next_input_byte; bytes_in_buffer := state.cinfo^.src^.bytes_in_buffer; end; Dec(bytes_in_buffer); c := GETJOCTET(next_input_byte^); Inc(next_input_byte); Until (c <> $FF);
if (c = 0) then begin { Found FF/00, which represents an FF data byte } c := $FF; end else begin { Oops, it's actually a marker indicating end of compressed data. Save the marker code for later use. Fine point: it might appear that we should save the marker into bitread working state, not straight into permanent state. But once we have hit a marker, we cannot need to suspend within the current MCU, because we will read no more bytes from the data source. So it is OK to update permanent state right away. }
cinfo^.unread_marker := c; { See if we need to insert some fake zero bits. } goto no_more_bytes; end; end;
{ OK, load c into get_buffer } get_buffer := (get_buffer shl 8) or c; Inc(bits_left, 8); end { end while } end else begin no_more_bytes: { We get here if we've read the marker that terminates the compressed data segment. There should be enough bits in the buffer register to satisfy the request; if so, no problem. }
if (nbits > bits_left) then begin { Uh-oh. Report corrupted data to user and stuff zeroes into the data stream, so that we can produce some kind of image. We use a nonvolatile flag to ensure that only one warning message appears per data segment. }
if not cinfo^.entropy^.insufficient_data then begin WARNMS(j_common_ptr(cinfo), JWRN_HIT_MARKER); cinfo^.entropy^.insufficient_data := TRUE; end; { Fill the buffer with zero bits } get_buffer := get_buffer shl (MIN_GET_BITS - bits_left); bits_left := MIN_GET_BITS; end; end;
{ Unload the local registers } state.next_input_byte := next_input_byte; state.bytes_in_buffer := bytes_in_buffer; state.get_buffer := get_buffer; state.bits_left := bits_left;
jpeg_fill_bit_buffer := TRUE; end;
{ Out-of-line code for Huffman code decoding. See jdhuff.h for info about usage. }
{GLOBAL} function jpeg_huff_decode (var state : bitread_working_state; {register} get_buffer : bit_buf_type; {register} bits_left : int; htbl : d_derived_tbl_ptr; min_bits : int) : int; var {register} l : int; {register} code : INT32; begin l := min_bits;
{ HUFF_DECODE has determined that the code is at least min_bits } { bits long, so fetch that many bits in one swoop. }
{CHECK_BIT_BUFFER(state, l, return -1);} if (bits_left < l) then begin if (not jpeg_fill_bit_buffer(state, get_buffer, bits_left, l)) then begin jpeg_huff_decode := -1; exit; end; get_buffer := state.get_buffer; bits_left := state.bits_left; end;
{code := GET_BITS(l);} Dec(bits_left, l); code := (int(get_buffer shr bits_left)) and ( pred(1 shl l) );
{ Collect the rest of the Huffman code one bit at a time. } { This is per Figure F.16 in the JPEG spec. }
while (code > htbl^.maxcode[l]) do begin code := code shl 1; {CHECK_BIT_BUFFER(state, 1, return -1);} if (bits_left < 1) then begin if (not jpeg_fill_bit_buffer(state, get_buffer, bits_left, 1)) then begin jpeg_huff_decode := -1; exit; end; get_buffer := state.get_buffer; bits_left := state.bits_left; end;
{code := code or GET_BITS(1);} Dec(bits_left); code := code or ( (int(get_buffer shr bits_left)) and pred(1 shl 1) );
Inc(l); end;
{ Unload the local registers } state.get_buffer := get_buffer; state.bits_left := bits_left;
{ With garbage input we may reach the sentinel value l := 17. }
if (l > 16) then begin WARNMS(j_common_ptr(state.cinfo), JWRN_HUFF_BAD_CODE); jpeg_huff_decode := 0; { fake a zero as the safest result } exit; end;
jpeg_huff_decode := htbl^.pub^.huffval[ int (code + htbl^.valoffset[l]) ]; end;
{ Figure F.12: extend sign bit. On some machines, a shift and add will be faster than a table lookup. }
{$ifdef AVOID_TABLES}
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
{$else}
{$define HUFF_EXTEND(x,s) if (x < extend_test[s]) then := x + extend_offset[s] else x;}
const extend_test : array[0..16-1] of int = { entry n is 2**(n-1) } ($0000, $0001, $0002, $0004, $0008, $0010, $0020, $0040, $0080, $0100, $0200, $0400, $0800, $1000, $2000, $4000);
const extend_offset : array[0..16-1] of int = { entry n is (-1 << n) + 1 } (0, ((-1) shl 1) + 1, ((-1) shl 2) + 1, ((-1) shl 3) + 1, ((-1) shl 4) + 1, ((-1) shl 5) + 1, ((-1) shl 6) + 1, ((-1) shl 7) + 1, ((-1) shl 8) + 1, ((-1) shl 9) + 1, ((-1) shl 10) + 1, ((-1) shl 11) + 1,((-1) shl 12) + 1, ((-1) shl 13) + 1, ((-1) shl 14) + 1, ((-1) shl 15) + 1);
{$endif} { AVOID_TABLES }
{ Check for a restart marker & resynchronize decoder. Returns FALSE if must suspend. }
{LOCAL} function process_restart (cinfo : j_decompress_ptr) : boolean; var entropy : huff_entropy_ptr; ci : int; begin entropy := huff_entropy_ptr (cinfo^.entropy);
{ Throw away any unused bits remaining in bit buffer; } { include any full bytes in next_marker's count of discarded bytes } Inc(cinfo^.marker^.discarded_bytes, entropy^.bitstate.bits_left div 8); entropy^.bitstate.bits_left := 0;
{ Advance past the RSTn marker } if (not cinfo^.marker^.read_restart_marker (cinfo)) then begin process_restart := FALSE; exit; end;
{ Re-initialize DC predictions to 0 } for ci := 0 to pred(cinfo^.comps_in_scan) do entropy^.saved.last_dc_val[ci] := 0;
{ Reset restart counter } entropy^.restarts_to_go := cinfo^.restart_interval;
{ Reset out-of-data flag, unless read_restart_marker left us smack up against a marker. In that case we will end up treating the next data segment as empty, and we can avoid producing bogus output pixels by leaving the flag set. }
if (cinfo^.unread_marker = 0) then entropy^.pub.insufficient_data := FALSE;
process_restart := TRUE; end;
{ Decode and return one MCU's worth of Huffman-compressed coefficients. The coefficients are reordered from zigzag order into natural array order, but are not dequantized.
The i'th block of the MCU is stored into the block pointed to by MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. (Wholesale zeroing is usually a little faster than retail...)
Returns FALSE if data source requested suspension. In that case no changes have been made to permanent state. (Exception: some output coefficients may already have been assigned. This is harmless for this module, since we'll just re-assign them on the next call.) }
{METHODDEF} function decode_mcu (cinfo : j_decompress_ptr; var MCU_data : array of JBLOCKROW) : boolean; label label1, label2, label3; var entropy : huff_entropy_ptr; {register} s, k, r : int; blkn, ci : int; block : JBLOCK_PTR; {BITREAD_STATE_VARS} get_buffer : bit_buf_type ; {register} bits_left : int; {register} br_state : bitread_working_state;
state : savable_state; dctbl : d_derived_tbl_ptr; actbl : d_derived_tbl_ptr; var nb, look : int; {register} begin entropy := huff_entropy_ptr (cinfo^.entropy);
{ Process restart marker if needed; may have to suspend } if (cinfo^.restart_interval <> 0) then begin if (entropy^.restarts_to_go = 0) then if (not process_restart(cinfo)) then begin decode_mcu := FALSE; exit; end; end;
{ If we've run out of data, just leave the MCU set to zeroes. This way, we return uniform gray for the remainder of the segment. }
if not entropy^.pub.insufficient_data then begin
{ Load up working state } {BITREAD_LOAD_STATE(cinfo,entropy^.bitstate);} br_state.cinfo := cinfo; br_state.next_input_byte := cinfo^.src^.next_input_byte; br_state.bytes_in_buffer := cinfo^.src^.bytes_in_buffer; get_buffer := entropy^.bitstate.get_buffer; bits_left := entropy^.bitstate.bits_left;
{ASSIGN_STATE(state, entropy^.saved);} state := entropy^.saved;
{ Outer loop handles each block in the MCU }
for blkn := 0 to pred(cinfo^.blocks_in_MCU) do begin block := JBLOCK_PTR(MCU_data[blkn]); dctbl := entropy^.dc_cur_tbls[blkn]; actbl := entropy^.ac_cur_tbls[blkn];
{ Decode a single block's worth of coefficients }
{ Section F.2.2.1: decode the DC coefficient difference } {HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);} if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then begin decode_mcu := False; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto label1; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := dctbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := dctbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; label1: s := jpeg_huff_decode(br_state,get_buffer,bits_left,dctbl,nb); if (s < 0) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
if (s <> 0) then begin {CHECK_BIT_BUFFER(br_state, s, return FALSE);} if (bits_left < s) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{r := GET_BITS(s);} Dec(bits_left, s); r := ( int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);} if (r < extend_test[s]) then s := r + extend_offset[s] else s := r; end;
if (entropy^.dc_needed[blkn]) then begin { Convert DC difference to actual value, update last_dc_val } ci := cinfo^.MCU_membership[blkn]; Inc(s, state.last_dc_val[ci]); state.last_dc_val[ci] := s; { Output the DC coefficient (assumes jpeg_natural_order[0] := 0) } block^[0] := JCOEF (s); end;
if (entropy^.ac_needed[blkn]) then begin
{ Section F.2.2.2: decode the AC coefficients } { Since zeroes are skipped, output area must be cleared beforehand } k := 1; while (k < DCTSIZE2) do { Nomssi: k is incr. in the loop } begin {HUFF_DECODE(s, br_state, actbl, return FALSE, label2);} if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then begin decode_mcu := False; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto label2; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := actbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := actbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; label2: s := jpeg_huff_decode(br_state,get_buffer,bits_left,actbl,nb); if (s < 0) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
r := s shr 4; s := s and 15;
if (s <> 0) then begin Inc(k, r); {CHECK_BIT_BUFFER(br_state, s, return FALSE);} if (bits_left < s) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{r := GET_BITS(s);} Dec(bits_left, s); r := (int(get_buffer shr bits_left)) and ( pred(1 shl s) );
{s := HUFF_EXTEND(r, s);} if (r < extend_test[s]) then s := r + extend_offset[s] else s := r; { Output coefficient in natural (dezigzagged) order. Note: the extra entries in jpeg_natural_order[] will save us if k >= DCTSIZE2, which could happen if the data is corrupted. }
block^[jpeg_natural_order[k]] := JCOEF (s); end else begin if (r <> 15) then break; Inc(k, 15); end; Inc(k); end; end else begin
{ Section F.2.2.2: decode the AC coefficients } { In this path we just discard the values } k := 1; while (k < DCTSIZE2) do begin {HUFF_DECODE(s, br_state, actbl, return FALSE, label3);} if (bits_left < HUFF_LOOKAHEAD) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left, 0)) then begin decode_mcu := False; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; if (bits_left < HUFF_LOOKAHEAD) then begin nb := 1; goto label3; end; end; {look := PEEK_BITS(HUFF_LOOKAHEAD);} look := int(get_buffer shr (bits_left - HUFF_LOOKAHEAD)) and pred(1 shl HUFF_LOOKAHEAD);
nb := actbl^.look_nbits[look]; if (nb <> 0) then begin {DROP_BITS(nb);} Dec(bits_left, nb);
s := actbl^.look_sym[look]; end else begin nb := HUFF_LOOKAHEAD+1; label3: s := jpeg_huff_decode(br_state,get_buffer,bits_left,actbl,nb); if (s < 0) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
r := s shr 4; s := s and 15;
if (s <> 0) then begin Inc(k, r); {CHECK_BIT_BUFFER(br_state, s, return FALSE);} if (bits_left < s) then begin if (not jpeg_fill_bit_buffer(br_state,get_buffer,bits_left,s)) then begin decode_mcu := FALSE; exit; end; get_buffer := br_state.get_buffer; bits_left := br_state.bits_left; end;
{DROP_BITS(s);} Dec(bits_left, s); end else begin if (r <> 15) then break; Inc(k, 15); end; Inc(k); end;
end; end;
{ Completed MCU, so update state } {BITREAD_SAVE_STATE(cinfo,entropy^.bitstate);} cinfo^.src^.next_input_byte := br_state.next_input_byte; cinfo^.src^.bytes_in_buffer := br_state.bytes_in_buffer; entropy^.bitstate.get_buffer := get_buffer; entropy^.bitstate.bits_left := bits_left;
{ASSIGN_STATE(entropy^.saved, state);} entropy^.saved := state;
end;
{ Account for restart interval (no-op if not using restarts) } if entropy^.restarts_to_go > 0 then Dec(entropy^.restarts_to_go);
decode_mcu := TRUE; end;
{ Module initialization routine for Huffman entropy decoding. }
{GLOBAL} procedure jinit_huff_decoder (cinfo : j_decompress_ptr); var entropy : huff_entropy_ptr; i : int; begin entropy := huff_entropy_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)) ); cinfo^.entropy := jpeg_entropy_decoder_ptr (entropy); entropy^.pub.start_pass := start_pass_huff_decoder; entropy^.pub.decode_mcu := decode_mcu;
{ Mark tables unallocated } for i := 0 to pred(NUM_HUFF_TBLS) do begin entropy^.dc_derived_tbls[i] := NIL; entropy^.ac_derived_tbls[i] := NIL; end; end;
end.
|