|
|
unit imjdmaster;
{ This file contains master control logic for the JPEG decompressor. These routines are concerned with selecting the modules to be executed and with determining the number of passes and the work to be done in each pass. }
{ Original: jdmaster.c ; Copyright (C) 1991-1998, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses imjmorecfg, imjinclude, imjutils, imjerror, imjdeferr, imjdcolor, imjdsample, imjdpostct, imjddctmgr, imjdphuff, imjdhuff, imjdcoefct, imjdmainct, {$ifdef QUANT_1PASS_SUPPORTED} imjquant1, {$endif} {$ifdef QUANT_2PASS_SUPPORTED} imjquant2, {$endif} {$ifdef UPSAMPLE_MERGING_SUPPORTED} imjdmerge, {$endif} imjpeglib;
{ Compute output image dimensions and related values. NOTE: this is exported for possible use by application. Hence it mustn't do anything that can't be done twice. Also note that it may be called before the master module is initialized! }
{GLOBAL} procedure jpeg_calc_output_dimensions (cinfo : j_decompress_ptr); { Do computations that are needed before master selection phase }
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{GLOBAL} procedure jpeg_new_colormap (cinfo : j_decompress_ptr);
{$endif}
{ Initialize master decompression control and select active modules. This is performed at the start of jpeg_start_decompress. }
{GLOBAL} procedure jinit_master_decompress (cinfo : j_decompress_ptr);
implementation
{ Private state }
type my_master_ptr = ^my_decomp_master; my_decomp_master = record pub : jpeg_decomp_master; { public fields }
pass_number : int; { # of passes completed }
using_merged_upsample : boolean; { TRUE if using merged upsample/cconvert }
{ Saved references to initialized quantizer modules, in case we need to switch modes. }
quantizer_1pass : jpeg_color_quantizer_ptr; quantizer_2pass : jpeg_color_quantizer_ptr; end;
{ Determine whether merged upsample/color conversion should be used. CRUCIAL: this must match the actual capabilities of jdmerge.c! }
{LOCAL} function use_merged_upsample (cinfo : j_decompress_ptr) : boolean; var compptr : jpeg_component_info_list_ptr; begin compptr := cinfo^.comp_info;
{$ifdef UPSAMPLE_MERGING_SUPPORTED} { Merging is the equivalent of plain box-filter upsampling } if (cinfo^.do_fancy_upsampling) or (cinfo^.CCIR601_sampling) then begin use_merged_upsample := FALSE; exit; end; { jdmerge.c only supports YCC=>RGB color conversion } if (cinfo^.jpeg_color_space <> JCS_YCbCr) or (cinfo^.num_components <> 3) or (cinfo^.out_color_space <> JCS_RGB) or (cinfo^.out_color_components <> RGB_PIXELSIZE) then begin use_merged_upsample := FALSE; exit; end;
{ and it only handles 2h1v or 2h2v sampling ratios } if (compptr^[0].h_samp_factor <> 2) or (compptr^[1].h_samp_factor <> 1) or (compptr^[2].h_samp_factor <> 1) or (compptr^[0].v_samp_factor > 2) or (compptr^[1].v_samp_factor <> 1) or (compptr^[2].v_samp_factor <> 1) then begin use_merged_upsample := FALSE; exit; end; { furthermore, it doesn't work if we've scaled the IDCTs differently } if (compptr^[0].DCT_scaled_size <> cinfo^.min_DCT_scaled_size) or (compptr^[1].DCT_scaled_size <> cinfo^.min_DCT_scaled_size) or (compptr^[2].DCT_scaled_size <> cinfo^.min_DCT_scaled_size) then begin use_merged_upsample := FALSE; exit; end; { ??? also need to test for upsample-time rescaling, when & if supported } use_merged_upsample := TRUE; { by golly, it'll work... } {$else} use_merged_upsample := FALSE; {$endif} end;
{ Compute output image dimensions and related values. NOTE: this is exported for possible use by application. Hence it mustn't do anything that can't be done twice. Also note that it may be called before the master module is initialized! }
{GLOBAL} procedure jpeg_calc_output_dimensions (cinfo : j_decompress_ptr); { Do computations that are needed before master selection phase } {$ifdef IDCT_SCALING_SUPPORTED} var ci : int; compptr : jpeg_component_info_ptr; {$endif} var ssize : int; begin { Prevent application from calling me at wrong times } if (cinfo^.global_state <> DSTATE_READY) then ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state);
{$ifdef IDCT_SCALING_SUPPORTED}
{ Compute actual output image dimensions and DCT scaling choices. } if (cinfo^.scale_num * 8 <= cinfo^.scale_denom) then begin { Provide 1/8 scaling } cinfo^.output_width := JDIMENSION ( jdiv_round_up( long(cinfo^.image_width), long(8)) ); cinfo^.output_height := JDIMENSION ( jdiv_round_up( long(cinfo^.image_height), long(8)) ); cinfo^.min_DCT_scaled_size := 1; end else if (cinfo^.scale_num * 4 <= cinfo^.scale_denom) then begin { Provide 1/4 scaling } cinfo^.output_width := JDIMENSION ( jdiv_round_up( long (cinfo^.image_width), long(4)) ); cinfo^.output_height := JDIMENSION ( jdiv_round_up( long (cinfo^.image_height), long(4)) ); cinfo^.min_DCT_scaled_size := 2; end else if (cinfo^.scale_num * 2 <= cinfo^.scale_denom) then begin { Provide 1/2 scaling } cinfo^.output_width := JDIMENSION ( jdiv_round_up( long(cinfo^.image_width), long(2)) ); cinfo^.output_height := JDIMENSION ( jdiv_round_up( long(cinfo^.image_height), long(2)) ); cinfo^.min_DCT_scaled_size := 4; end else begin { Provide 1/1 scaling } cinfo^.output_width := cinfo^.image_width; cinfo^.output_height := cinfo^.image_height; cinfo^.min_DCT_scaled_size := DCTSIZE; end; { In selecting the actual DCT scaling for each component, we try to scale up the chroma components via IDCT scaling rather than upsampling. This saves time if the upsampler gets to use 1:1 scaling. Note this code assumes that the supported DCT scalings are powers of 2. }
compptr := jpeg_component_info_ptr(cinfo^.comp_info); for ci := 0 to pred(cinfo^.num_components) do begin ssize := cinfo^.min_DCT_scaled_size; while (ssize < DCTSIZE) and ((compptr^.h_samp_factor * ssize * 2 <= cinfo^.max_h_samp_factor * cinfo^.min_DCT_scaled_size) and (compptr^.v_samp_factor * ssize * 2 <= cinfo^.max_v_samp_factor * cinfo^.min_DCT_scaled_size)) do begin ssize := ssize * 2; end; compptr^.DCT_scaled_size := ssize; Inc(compptr); end;
{ Recompute downsampled dimensions of components; application needs to know these if using raw downsampled data. }
compptr := jpeg_component_info_ptr(cinfo^.comp_info); for ci := 0 to pred(cinfo^.num_components) do begin { Size in samples, after IDCT scaling } compptr^.downsampled_width := JDIMENSION ( jdiv_round_up(long (cinfo^.image_width) * long (compptr^.h_samp_factor * compptr^.DCT_scaled_size), long (cinfo^.max_h_samp_factor * DCTSIZE)) ); compptr^.downsampled_height := JDIMENSION ( jdiv_round_up(long (cinfo^.image_height) * long (compptr^.v_samp_factor * compptr^.DCT_scaled_size), long (cinfo^.max_v_samp_factor * DCTSIZE)) ); Inc(compptr); end;
{$else} { !IDCT_SCALING_SUPPORTED }
{ Hardwire it to "no scaling" } cinfo^.output_width := cinfo^.image_width; cinfo^.output_height := cinfo^.image_height; { jdinput.c has already initialized DCT_scaled_size to DCTSIZE, and has computed unscaled downsampled_width and downsampled_height. }
{$endif} { IDCT_SCALING_SUPPORTED }
{ Report number of components in selected colorspace. } { Probably this should be in the color conversion module... } case (cinfo^.out_color_space) of JCS_GRAYSCALE: cinfo^.out_color_components := 1; {$ifndef RGB_PIXELSIZE_IS_3} JCS_RGB: cinfo^.out_color_components := RGB_PIXELSIZE; {$else} JCS_RGB, {$endif} { else share code with YCbCr } JCS_YCbCr: cinfo^.out_color_components := 3; JCS_CMYK, JCS_YCCK: cinfo^.out_color_components := 4; else { else must be same colorspace as in file } cinfo^.out_color_components := cinfo^.num_components; end; if (cinfo^.quantize_colors) then cinfo^.output_components := 1 else cinfo^.output_components := cinfo^.out_color_components;
{ See if upsampler will want to emit more than one row at a time } if (use_merged_upsample(cinfo)) then cinfo^.rec_outbuf_height := cinfo^.max_v_samp_factor else cinfo^.rec_outbuf_height := 1; end;
{ Several decompression processes need to range-limit values to the range 0..MAXJSAMPLE; the input value may fall somewhat outside this range due to noise introduced by quantization, roundoff error, etc. These processes are inner loops and need to be as fast as possible. On most machines, particularly CPUs with pipelines or instruction prefetch, a (subscript-check-less) C table lookup x := sample_range_limit[x]; is faster than explicit tests if (x < 0) x := 0; else if (x > MAXJSAMPLE) x := MAXJSAMPLE; These processes all use a common table prepared by the routine below.
For most steps we can mathematically guarantee that the initial value of x is within MAXJSAMPLE+1 of the legal range, so a table running from -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial limiting step (just after the IDCT), a wildly out-of-range value is possible if the input data is corrupt. To avoid any chance of indexing off the end of memory and getting a bad-pointer trap, we perform the post-IDCT limiting thus: x := range_limit[x & MASK]; where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit samples. Under normal circumstances this is more than enough range and a correct output will be generated; with bogus input data the mask will cause wraparound, and we will safely generate a bogus-but-in-range output. For the post-IDCT step, we want to convert the data from signed to unsigned representation by adding CENTERJSAMPLE at the same time that we limit it. So the post-IDCT limiting table ends up looking like this: CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), 0,1,...,CENTERJSAMPLE-1 Negative inputs select values from the upper half of the table after masking.
We can save some space by overlapping the start of the post-IDCT table with the simpler range limiting table. The post-IDCT table begins at sample_range_limit + CENTERJSAMPLE.
Note that the table is allocated in near data space on PCs; it's small enough and used often enough to justify this. }
{LOCAL} procedure prepare_range_limit_table (cinfo : j_decompress_ptr); { Allocate and fill in the sample_range_limit table } var table : range_limit_table_ptr; idct_table : JSAMPROW; i : int; begin table := range_limit_table_ptr ( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)) );
{ First segment of "simple" table: limit[x] := 0 for x < 0 } MEMZERO(table, (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
cinfo^.sample_range_limit := (table); { allow negative subscripts of simple table } { is noop, handled via type definition (Nomssi) } { Main part of "simple" table: limit[x] := x } for i := 0 to MAXJSAMPLE do table^[i] := JSAMPLE (i); idct_table := JSAMPROW(@ table^[CENTERJSAMPLE]); { Point to where post-IDCT table starts } { End of simple table, rest of first half of post-IDCT table } for i := CENTERJSAMPLE to pred(2*(MAXJSAMPLE+1)) do idct_table^[i] := MAXJSAMPLE; { Second half of post-IDCT table } MEMZERO(@(idct_table^[2 * (MAXJSAMPLE+1)]), (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); MEMCOPY(@(idct_table^[(4 * (MAXJSAMPLE+1) - CENTERJSAMPLE)]), @cinfo^.sample_range_limit^[0], CENTERJSAMPLE * SIZEOF(JSAMPLE));
end;
{ Master selection of decompression modules. This is done once at jpeg_start_decompress time. We determine which modules will be used and give them appropriate initialization calls. We also initialize the decompressor input side to begin consuming data.
Since jpeg_read_header has finished, we know what is in the SOF and (first) SOS markers. We also have all the application parameter settings. }
{LOCAL} procedure master_selection (cinfo : j_decompress_ptr); var master : my_master_ptr; use_c_buffer : boolean; samplesperrow : long; jd_samplesperrow : JDIMENSION; var nscans : int; begin master := my_master_ptr (cinfo^.master);
{ Initialize dimensions and other stuff } jpeg_calc_output_dimensions(cinfo); prepare_range_limit_table(cinfo);
{ Width of an output scanline must be representable as JDIMENSION. } samplesperrow := long(cinfo^.output_width) * long (cinfo^.out_color_components); jd_samplesperrow := JDIMENSION (samplesperrow); if (long(jd_samplesperrow) <> samplesperrow) then ERREXIT(j_common_ptr(cinfo), JERR_WIDTH_OVERFLOW);
{ Initialize my private state } master^.pass_number := 0; master^.using_merged_upsample := use_merged_upsample(cinfo);
{ Color quantizer selection } master^.quantizer_1pass := NIL; master^.quantizer_2pass := NIL; { No mode changes if not using buffered-image mode. } if (not cinfo^.quantize_colors) or (not cinfo^.buffered_image) then begin cinfo^.enable_1pass_quant := FALSE; cinfo^.enable_external_quant := FALSE; cinfo^.enable_2pass_quant := FALSE; end; if (cinfo^.quantize_colors) then begin if (cinfo^.raw_data_out) then ERREXIT(j_common_ptr(cinfo), JERR_NOTIMPL); { 2-pass quantizer only works in 3-component color space. } if (cinfo^.out_color_components <> 3) then begin cinfo^.enable_1pass_quant := TRUE; cinfo^.enable_external_quant := FALSE; cinfo^.enable_2pass_quant := FALSE; cinfo^.colormap := NIL; end else if (cinfo^.colormap <> NIL) then begin cinfo^.enable_external_quant := TRUE; end else if (cinfo^.two_pass_quantize) then begin cinfo^.enable_2pass_quant := TRUE; end else begin cinfo^.enable_1pass_quant := TRUE; end;
if (cinfo^.enable_1pass_quant) then begin {$ifdef QUANT_1PASS_SUPPORTED} jinit_1pass_quantizer(cinfo); master^.quantizer_1pass := cinfo^.cquantize; {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end;
{ We use the 2-pass code to map to external colormaps. } if (cinfo^.enable_2pass_quant) or (cinfo^.enable_external_quant) then begin {$ifdef QUANT_2PASS_SUPPORTED} jinit_2pass_quantizer(cinfo); master^.quantizer_2pass := cinfo^.cquantize; {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end; { If both quantizers are initialized, the 2-pass one is left active; this is necessary for starting with quantization to an external map. } end;
{ Post-processing: in particular, color conversion first } if (not cinfo^.raw_data_out) then begin if (master^.using_merged_upsample) then begin {$ifdef UPSAMPLE_MERGING_SUPPORTED} jinit_merged_upsampler(cinfo); { does color conversion too } {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end else begin jinit_color_deconverter(cinfo); jinit_upsampler(cinfo); end; jinit_d_post_controller(cinfo, cinfo^.enable_2pass_quant); end; { Inverse DCT } jinit_inverse_dct(cinfo); { Entropy decoding: either Huffman or arithmetic coding. } if (cinfo^.arith_code) then begin ERREXIT(j_common_ptr(cinfo), JERR_ARITH_NOTIMPL); end else begin if (cinfo^.progressive_mode) then begin {$ifdef D_PROGRESSIVE_SUPPORTED} jinit_phuff_decoder(cinfo); {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end else jinit_huff_decoder(cinfo); end;
{ Initialize principal buffer controllers. } use_c_buffer := cinfo^.inputctl^.has_multiple_scans or cinfo^.buffered_image; jinit_d_coef_controller(cinfo, use_c_buffer);
if (not cinfo^.raw_data_out) then jinit_d_main_controller(cinfo, FALSE { never need full buffer here });
{ We can now tell the memory manager to allocate virtual arrays. } cinfo^.mem^.realize_virt_arrays (j_common_ptr(cinfo));
{ Initialize input side of decompressor to consume first scan. } cinfo^.inputctl^.start_input_pass (cinfo);
{$ifdef D_MULTISCAN_FILES_SUPPORTED} { If jpeg_start_decompress will read the whole file, initialize progress monitoring appropriately. The input step is counted as one pass. }
if (cinfo^.progress <> NIL) and (not cinfo^.buffered_image) and (cinfo^.inputctl^.has_multiple_scans) then begin
{ Estimate number of scans to set pass_limit. } if (cinfo^.progressive_mode) then begin { Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. } nscans := 2 + 3 * cinfo^.num_components; end else begin { For a nonprogressive multiscan file, estimate 1 scan per component. } nscans := cinfo^.num_components; end; cinfo^.progress^.pass_counter := Long(0); cinfo^.progress^.pass_limit := long (cinfo^.total_iMCU_rows) * nscans; cinfo^.progress^.completed_passes := 0; if cinfo^.enable_2pass_quant then cinfo^.progress^.total_passes := 3 else cinfo^.progress^.total_passes := 2; { Count the input pass as done } Inc(master^.pass_number); end; {$endif} { D_MULTISCAN_FILES_SUPPORTED } end;
{ Per-pass setup. This is called at the beginning of each output pass. We determine which modules will be active during this pass and give them appropriate start_pass calls. We also set is_dummy_pass to indicate whether this is a "real" output pass or a dummy pass for color quantization. (In the latter case, jdapistd.c will crank the pass to completion.) }
{METHODDEF} procedure prepare_for_output_pass (cinfo : j_decompress_ptr); var master : my_master_ptr; begin master := my_master_ptr (cinfo^.master);
if (master^.pub.is_dummy_pass) then begin {$ifdef QUANT_2PASS_SUPPORTED} { Final pass of 2-pass quantization } master^.pub.is_dummy_pass := FALSE; cinfo^.cquantize^.start_pass (cinfo, FALSE); cinfo^.post^.start_pass (cinfo, JBUF_CRANK_DEST); cinfo^.main^.start_pass (cinfo, JBUF_CRANK_DEST); {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} { QUANT_2PASS_SUPPORTED } end else begin if (cinfo^.quantize_colors) and (cinfo^.colormap = NIL) then begin { Select new quantization method } if (cinfo^.two_pass_quantize) and (cinfo^.enable_2pass_quant) then begin cinfo^.cquantize := master^.quantizer_2pass; master^.pub.is_dummy_pass := TRUE; end else if (cinfo^.enable_1pass_quant) then begin cinfo^.cquantize := master^.quantizer_1pass; end else begin ERREXIT(j_common_ptr(cinfo), JERR_MODE_CHANGE); end; end; cinfo^.idct^.start_pass (cinfo); cinfo^.coef^.start_output_pass (cinfo); if (not cinfo^.raw_data_out) then begin if (not master^.using_merged_upsample) then cinfo^.cconvert^.start_pass (cinfo); cinfo^.upsample^.start_pass (cinfo); if (cinfo^.quantize_colors) then cinfo^.cquantize^.start_pass (cinfo, master^.pub.is_dummy_pass); if master^.pub.is_dummy_pass then cinfo^.post^.start_pass (cinfo, JBUF_SAVE_AND_PASS) else cinfo^.post^.start_pass (cinfo, JBUF_PASS_THRU); cinfo^.main^.start_pass (cinfo, JBUF_PASS_THRU); end; end;
{ Set up progress monitor's pass info if present } if (cinfo^.progress <> NIL) then begin cinfo^.progress^.completed_passes := master^.pass_number; if master^.pub.is_dummy_pass then cinfo^.progress^.total_passes := master^.pass_number + 2 else cinfo^.progress^.total_passes := master^.pass_number + 1; { In buffered-image mode, we assume one more output pass if EOI not yet reached, but no more passes if EOI has been reached. }
if (cinfo^.buffered_image) and (not cinfo^.inputctl^.eoi_reached) then begin if cinfo^.enable_2pass_quant then Inc(cinfo^.progress^.total_passes, 2) else Inc(cinfo^.progress^.total_passes, 1); end; end; end;
{ Finish up at end of an output pass. }
{METHODDEF} procedure finish_output_pass (cinfo : j_decompress_ptr); var master : my_master_ptr; begin master := my_master_ptr (cinfo^.master);
if (cinfo^.quantize_colors) then cinfo^.cquantize^.finish_pass (cinfo); Inc(master^.pass_number); end;
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{ Switch to a new external colormap between output passes. }
{GLOBAL} procedure jpeg_new_colormap (cinfo : j_decompress_ptr); var master : my_master_ptr; begin master := my_master_ptr (cinfo^.master);
{ Prevent application from calling me at wrong times } if (cinfo^.global_state <> DSTATE_BUFIMAGE) then ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state);
if (cinfo^.quantize_colors) and (cinfo^.enable_external_quant) and (cinfo^.colormap <> NIL) then begin { Select 2-pass quantizer for external colormap use } cinfo^.cquantize := master^.quantizer_2pass; { Notify quantizer of colormap change } cinfo^.cquantize^.new_color_map (cinfo); master^.pub.is_dummy_pass := FALSE; { just in case } end else ERREXIT(j_common_ptr(cinfo), JERR_MODE_CHANGE); end;
{$endif} { D_MULTISCAN_FILES_SUPPORTED }
{ Initialize master decompression control and select active modules. This is performed at the start of jpeg_start_decompress. }
{GLOBAL} procedure jinit_master_decompress (cinfo : j_decompress_ptr); var master : my_master_ptr; begin master := my_master_ptr ( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(my_decomp_master)) ); cinfo^.master := jpeg_decomp_master_ptr(master); master^.pub.prepare_for_output_pass := prepare_for_output_pass; master^.pub.finish_output_pass := finish_output_pass;
master^.pub.is_dummy_pass := FALSE;
master_selection(cinfo); end;
end.
|