Orzu Ionut
3 years ago
13 changed files with 2310 additions and 2 deletions
-
1resources/python/dewarp
-
21resources/python/dewarp_2/LICENSE.txt
-
14resources/python/dewarp_2/README.md
-
46resources/python/dewarp_2/derive_cubic.py
-
922resources/python/dewarp_2/page_dewarp.py
-
5resources/python/dewarp_2/requirements.txt
-
1resources/python/unproject
-
24resources/python/unproject_2/LICENSE.txt
-
16resources/python/unproject_2/README.md
-
630resources/python/unproject_2/ellipse.py
-
123resources/python/unproject_2/moments_from_contour.py
-
5resources/python/unproject_2/requirements.txt
-
504resources/python/unproject_2/unproject_text.py
@ -0,0 +1,21 @@ |
|||
MIT License |
|||
|
|||
Copyright (c) 2016, Matt Zucker |
|||
|
|||
Permission is hereby granted, free of charge, to any person obtaining a copy |
|||
of this software and associated documentation files (the "Software"), to deal |
|||
in the Software without restriction, including without limitation the rights |
|||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|||
copies of the Software, and to permit persons to whom the Software is |
|||
furnished to do so, subject to the following conditions: |
|||
|
|||
The above copyright notice and this permission notice shall be included in all |
|||
copies or substantial portions of the Software. |
|||
|
|||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|||
SOFTWARE. |
@ -0,0 +1,14 @@ |
|||
page_dewarp |
|||
=========== |
|||
|
|||
Page dewarping and thresholding using a "cubic sheet" model - see full writeup at <https://mzucker.github.io/2016/08/15/page-dewarping.html> |
|||
|
|||
Requirements: |
|||
|
|||
- scipy |
|||
- OpenCV 3.0 or greater |
|||
- Image module from PIL or Pillow |
|||
|
|||
Usage: |
|||
|
|||
page_dewarp.py IMAGE1 [IMAGE2 ...] |
@ -0,0 +1,46 @@ |
|||
from __future__ import print_function |
|||
import matplotlib.pyplot as plt |
|||
import numpy as np |
|||
import sympy |
|||
|
|||
# create a bunch of symbols |
|||
a, b, c, d, x, alpha, beta = sympy.symbols('a b c d x alpha beta') |
|||
|
|||
# create a polynomial function f(x) |
|||
f = a*x**3 + b*x**2 + c*x + d |
|||
|
|||
# get its derivative f'(x) |
|||
fp = f.diff(x) |
|||
|
|||
# evaluate both at x=0 and x=1 |
|||
f0 = f.subs(x, 0) |
|||
f1 = f.subs(x, 1) |
|||
fp0 = fp.subs(x, 0) |
|||
fp1 = fp.subs(x, 1) |
|||
|
|||
# we want a, b, c, d such that the following conditions hold: |
|||
# |
|||
# f(0) = 0 |
|||
# f(1) = 0 |
|||
# f'(0) = alpha |
|||
# f'(1) = beta |
|||
|
|||
S = sympy.solve([f0, f1, fp0-alpha, fp1-beta], [a, b, c, d]) |
|||
|
|||
# print the analytic solution and plot a graphical example |
|||
coeffs = [] |
|||
|
|||
num_alpha = 0.3 |
|||
num_beta = 0.03 |
|||
|
|||
for key in [a, b, c, d]: |
|||
print(key, '=', S[key]) |
|||
coeffs.append(S[key].subs(dict(alpha=num_alpha, |
|||
beta=num_beta))) |
|||
|
|||
xvals = np.linspace(0, 1, 101) |
|||
yvals = np.polyval(coeffs, xvals) |
|||
|
|||
plt.plot(xvals, yvals) |
|||
plt.show() |
|||
|
@ -0,0 +1,922 @@ |
|||
#!/usr/bin/env python |
|||
###################################################################### |
|||
# page_dewarp.py - Proof-of-concept of page-dewarping based on a |
|||
# "cubic sheet" model. Requires OpenCV (version 3 or greater), |
|||
# PIL/Pillow, and scipy.optimize. |
|||
###################################################################### |
|||
# Author: Matt Zucker |
|||
# Date: July 2016 |
|||
# License: MIT License (see LICENSE.txt) |
|||
###################################################################### |
|||
|
|||
from __future__ import division |
|||
from __future__ import print_function |
|||
from builtins import zip |
|||
from builtins import str |
|||
from builtins import range |
|||
from builtins import object |
|||
from past.utils import old_div |
|||
import os |
|||
import sys |
|||
import datetime |
|||
import cv2 |
|||
from PIL import Image |
|||
import numpy as np |
|||
import scipy.optimize |
|||
|
|||
# for some reason pylint complains about cv2 members being undefined :( |
|||
# pylint: disable=E1101 |
|||
|
|||
PAGE_MARGIN_X = 50 # reduced px to ignore near L/R edge |
|||
PAGE_MARGIN_Y = 20 # reduced px to ignore near T/B edge |
|||
|
|||
OUTPUT_ZOOM = 1.0 # how much to zoom output relative to *original* image |
|||
OUTPUT_DPI = 300 # just affects stated DPI of PNG, not appearance |
|||
REMAP_DECIMATE = 16 # downscaling factor for remapping image |
|||
|
|||
ADAPTIVE_WINSZ = 55 # window size for adaptive threshold in reduced px |
|||
|
|||
TEXT_MIN_WIDTH = 15 # min reduced px width of detected text contour |
|||
TEXT_MIN_HEIGHT = 2 # min reduced px height of detected text contour |
|||
TEXT_MIN_ASPECT = 1.5 # filter out text contours below this w/h ratio |
|||
TEXT_MAX_THICKNESS = 10 # max reduced px thickness of detected text contour |
|||
|
|||
EDGE_MAX_OVERLAP = 1.0 # max reduced px horiz. overlap of contours in span |
|||
EDGE_MAX_LENGTH = 100.0 # max reduced px length of edge connecting contours |
|||
EDGE_ANGLE_COST = 10.0 # cost of angles in edges (tradeoff vs. length) |
|||
EDGE_MAX_ANGLE = 7.5 # maximum change in angle allowed between contours |
|||
|
|||
RVEC_IDX = slice(0, 3) # index of rvec in params vector |
|||
TVEC_IDX = slice(3, 6) # index of tvec in params vector |
|||
CUBIC_IDX = slice(6, 8) # index of cubic slopes in params vector |
|||
|
|||
SPAN_MIN_WIDTH = 30 # minimum reduced px width for span |
|||
SPAN_PX_PER_STEP = 20 # reduced px spacing for sampling along spans |
|||
FOCAL_LENGTH = 1.2 # normalized focal length of camera |
|||
|
|||
DEBUG_LEVEL = 0 # 0=none, 1=some, 2=lots, 3=all |
|||
DEBUG_OUTPUT = 'file' # file, screen, both |
|||
|
|||
WINDOW_NAME = 'Dewarp' # Window name for visualization |
|||
|
|||
# nice color palette for visualizing contours, etc. |
|||
CCOLORS = [ |
|||
(255, 0, 0), |
|||
(255, 63, 0), |
|||
(255, 127, 0), |
|||
(255, 191, 0), |
|||
(255, 255, 0), |
|||
(191, 255, 0), |
|||
(127, 255, 0), |
|||
(63, 255, 0), |
|||
(0, 255, 0), |
|||
(0, 255, 63), |
|||
(0, 255, 127), |
|||
(0, 255, 191), |
|||
(0, 255, 255), |
|||
(0, 191, 255), |
|||
(0, 127, 255), |
|||
(0, 63, 255), |
|||
(0, 0, 255), |
|||
(63, 0, 255), |
|||
(127, 0, 255), |
|||
(191, 0, 255), |
|||
(255, 0, 255), |
|||
(255, 0, 191), |
|||
(255, 0, 127), |
|||
(255, 0, 63), |
|||
] |
|||
|
|||
# default intrinsic parameter matrix |
|||
K = np.array([ |
|||
[FOCAL_LENGTH, 0, 0], |
|||
[0, FOCAL_LENGTH, 0], |
|||
[0, 0, 1]], dtype=np.float32) |
|||
|
|||
|
|||
def debug_show(name, step, text, display): |
|||
|
|||
if DEBUG_OUTPUT != 'screen': |
|||
filetext = text.replace(' ', '_') |
|||
outfile = name + '_debug_' + str(step) + '_' + filetext + '.png' |
|||
cv2.imwrite(outfile, display) |
|||
|
|||
if DEBUG_OUTPUT != 'file': |
|||
|
|||
image = display.copy() |
|||
height = image.shape[0] |
|||
|
|||
cv2.putText(image, text, (16, height-16), |
|||
cv2.FONT_HERSHEY_SIMPLEX, 1.0, |
|||
(0, 0, 0), 3, cv2.LINE_AA) |
|||
|
|||
cv2.putText(image, text, (16, height-16), |
|||
cv2.FONT_HERSHEY_SIMPLEX, 1.0, |
|||
(255, 255, 255), 1, cv2.LINE_AA) |
|||
|
|||
cv2.imshow(WINDOW_NAME, image) |
|||
|
|||
while cv2.waitKey(5) < 0: |
|||
pass |
|||
|
|||
|
|||
def round_nearest_multiple(i, factor): |
|||
i = int(i) |
|||
rem = i % factor |
|||
if not rem: |
|||
return i |
|||
else: |
|||
return i + factor - rem |
|||
|
|||
|
|||
def pix2norm(shape, pts): |
|||
height, width = shape[:2] |
|||
scl = 2.0/(max(height, width)) |
|||
offset = np.array([width, height], dtype=pts.dtype).reshape((-1, 1, 2))*0.5 |
|||
return (pts - offset) * scl |
|||
|
|||
|
|||
def norm2pix(shape, pts, as_integer): |
|||
height, width = shape[:2] |
|||
scl = max(height, width)*0.5 |
|||
offset = np.array([0.5*width, 0.5*height], |
|||
dtype=pts.dtype).reshape((-1, 1, 2)) |
|||
rval = pts * scl + offset |
|||
if as_integer: |
|||
return (rval + 0.5).astype(int) |
|||
else: |
|||
return rval |
|||
|
|||
|
|||
def fltp(point): |
|||
return tuple(point.astype(int).flatten()) |
|||
|
|||
|
|||
def draw_correspondences(img, dstpoints, projpts): |
|||
|
|||
display = img.copy() |
|||
dstpoints = norm2pix(img.shape, dstpoints, True) |
|||
projpts = norm2pix(img.shape, projpts, True) |
|||
|
|||
for pts, color in [(projpts, (255, 0, 0)), |
|||
(dstpoints, (0, 0, 255))]: |
|||
|
|||
for point in pts: |
|||
cv2.circle(display, fltp(point), 3, color, -1, cv2.LINE_AA) |
|||
|
|||
for point_a, point_b in zip(projpts, dstpoints): |
|||
cv2.line(display, fltp(point_a), fltp(point_b), |
|||
(255, 255, 255), 1, cv2.LINE_AA) |
|||
|
|||
return display |
|||
|
|||
|
|||
def get_default_params(corners, ycoords, xcoords): |
|||
|
|||
# page width and height |
|||
page_width = np.linalg.norm(corners[1] - corners[0]) |
|||
page_height = np.linalg.norm(corners[-1] - corners[0]) |
|||
rough_dims = (page_width, page_height) |
|||
|
|||
# our initial guess for the cubic has no slope |
|||
cubic_slopes = [0.0, 0.0] |
|||
|
|||
# object points of flat page in 3D coordinates |
|||
corners_object3d = np.array([ |
|||
[0, 0, 0], |
|||
[page_width, 0, 0], |
|||
[page_width, page_height, 0], |
|||
[0, page_height, 0]]) |
|||
|
|||
# estimate rotation and translation from four 2D-to-3D point |
|||
# correspondences |
|||
_, rvec, tvec = cv2.solvePnP(corners_object3d, |
|||
corners, K, np.zeros(5)) |
|||
|
|||
span_counts = [len(xc) for xc in xcoords] |
|||
|
|||
params = np.hstack((np.array(rvec).flatten(), |
|||
np.array(tvec).flatten(), |
|||
np.array(cubic_slopes).flatten(), |
|||
ycoords.flatten()) + |
|||
tuple(xcoords)) |
|||
|
|||
return rough_dims, span_counts, params |
|||
|
|||
|
|||
def project_xy(xy_coords, pvec): |
|||
|
|||
# get cubic polynomial coefficients given |
|||
# |
|||
# f(0) = 0, f'(0) = alpha |
|||
# f(1) = 0, f'(1) = beta |
|||
|
|||
alpha, beta = tuple(pvec[CUBIC_IDX]) |
|||
|
|||
poly = np.array([ |
|||
alpha + beta, |
|||
-2*alpha - beta, |
|||
alpha, |
|||
0]) |
|||
|
|||
xy_coords = xy_coords.reshape((-1, 2)) |
|||
z_coords = np.polyval(poly, xy_coords[:, 0]) |
|||
|
|||
objpoints = np.hstack((xy_coords, z_coords.reshape((-1, 1)))) |
|||
|
|||
image_points, _ = cv2.projectPoints(objpoints, |
|||
pvec[RVEC_IDX], |
|||
pvec[TVEC_IDX], |
|||
K, np.zeros(5)) |
|||
|
|||
return image_points |
|||
|
|||
|
|||
def project_keypoints(pvec, keypoint_index): |
|||
|
|||
xy_coords = pvec[keypoint_index] |
|||
xy_coords[0, :] = 0 |
|||
|
|||
return project_xy(xy_coords, pvec) |
|||
|
|||
|
|||
def resize_to_screen(src, maxw=1280, maxh=700, copy=False): |
|||
|
|||
height, width = src.shape[:2] |
|||
|
|||
scl_x = float(width)/maxw |
|||
scl_y = float(height)/maxh |
|||
|
|||
scl = int(np.ceil(max(scl_x, scl_y))) |
|||
|
|||
if scl > 1.0: |
|||
inv_scl = 1.0/scl |
|||
img = cv2.resize(src, (0, 0), None, inv_scl, inv_scl, cv2.INTER_AREA) |
|||
elif copy: |
|||
img = src.copy() |
|||
else: |
|||
img = src |
|||
|
|||
return img |
|||
|
|||
|
|||
def box(width, height): |
|||
return np.ones((height, width), dtype=np.uint8) |
|||
|
|||
|
|||
def get_page_extents(small): |
|||
|
|||
height, width = small.shape[:2] |
|||
|
|||
xmin = PAGE_MARGIN_X |
|||
ymin = PAGE_MARGIN_Y |
|||
xmax = width-PAGE_MARGIN_X |
|||
ymax = height-PAGE_MARGIN_Y |
|||
|
|||
page = np.zeros((height, width), dtype=np.uint8) |
|||
cv2.rectangle(page, (xmin, ymin), (xmax, ymax), (255, 255, 255), -1) |
|||
|
|||
outline = np.array([ |
|||
[xmin, ymin], |
|||
[xmin, ymax], |
|||
[xmax, ymax], |
|||
[xmax, ymin]]) |
|||
|
|||
return page, outline |
|||
|
|||
|
|||
def get_mask(name, small, pagemask, masktype): |
|||
|
|||
sgray = cv2.cvtColor(small, cv2.COLOR_RGB2GRAY) |
|||
|
|||
if masktype == 'text': |
|||
|
|||
mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, |
|||
cv2.THRESH_BINARY_INV, |
|||
ADAPTIVE_WINSZ, |
|||
25) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.1, 'thresholded', mask) |
|||
|
|||
mask = cv2.dilate(mask, box(9, 1)) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.2, 'dilated', mask) |
|||
|
|||
mask = cv2.erode(mask, box(1, 3)) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.3, 'eroded', mask) |
|||
|
|||
else: |
|||
|
|||
mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, |
|||
cv2.THRESH_BINARY_INV, |
|||
ADAPTIVE_WINSZ, |
|||
7) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.4, 'thresholded', mask) |
|||
|
|||
mask = cv2.erode(mask, box(3, 1), iterations=3) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.5, 'eroded', mask) |
|||
|
|||
mask = cv2.dilate(mask, box(8, 2)) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.6, 'dilated', mask) |
|||
|
|||
return np.minimum(mask, pagemask) |
|||
|
|||
|
|||
def interval_measure_overlap(int_a, int_b): |
|||
return min(int_a[1], int_b[1]) - max(int_a[0], int_b[0]) |
|||
|
|||
|
|||
def angle_dist(angle_b, angle_a): |
|||
|
|||
diff = angle_b - angle_a |
|||
|
|||
while diff > np.pi: |
|||
diff -= 2*np.pi |
|||
|
|||
while diff < -np.pi: |
|||
diff += 2*np.pi |
|||
|
|||
return np.abs(diff) |
|||
|
|||
|
|||
def blob_mean_and_tangent(contour): |
|||
|
|||
moments = cv2.moments(contour) |
|||
|
|||
area = moments['m00'] |
|||
|
|||
mean_x = old_div(moments['m10'], area) |
|||
mean_y = old_div(moments['m01'], area) |
|||
|
|||
moments_matrix = old_div(np.array([ |
|||
[moments['mu20'], moments['mu11']], |
|||
[moments['mu11'], moments['mu02']] |
|||
]), area) |
|||
|
|||
_, svd_u, _ = cv2.SVDecomp(moments_matrix) |
|||
|
|||
center = np.array([mean_x, mean_y]) |
|||
tangent = svd_u[:, 0].flatten().copy() |
|||
|
|||
return center, tangent |
|||
|
|||
|
|||
class ContourInfo(object): |
|||
|
|||
def __init__(self, contour, rect, mask): |
|||
|
|||
self.contour = contour |
|||
self.rect = rect |
|||
self.mask = mask |
|||
|
|||
self.center, self.tangent = blob_mean_and_tangent(contour) |
|||
|
|||
self.angle = np.arctan2(self.tangent[1], self.tangent[0]) |
|||
|
|||
clx = [self.proj_x(point) for point in contour] |
|||
|
|||
lxmin = min(clx) |
|||
lxmax = max(clx) |
|||
|
|||
self.local_xrng = (lxmin, lxmax) |
|||
|
|||
self.point0 = self.center + self.tangent * lxmin |
|||
self.point1 = self.center + self.tangent * lxmax |
|||
|
|||
self.pred = None |
|||
self.succ = None |
|||
|
|||
def proj_x(self, point): |
|||
return np.dot(self.tangent, point.flatten()-self.center) |
|||
|
|||
def local_overlap(self, other): |
|||
xmin = self.proj_x(other.point0) |
|||
xmax = self.proj_x(other.point1) |
|||
return interval_measure_overlap(self.local_xrng, (xmin, xmax)) |
|||
|
|||
|
|||
def generate_candidate_edge(cinfo_a, cinfo_b): |
|||
|
|||
# we want a left of b (so a's successor will be b and b's |
|||
# predecessor will be a) make sure right endpoint of b is to the |
|||
# right of left endpoint of a. |
|||
if cinfo_a.point0[0] > cinfo_b.point1[0]: |
|||
tmp = cinfo_a |
|||
cinfo_a = cinfo_b |
|||
cinfo_b = tmp |
|||
|
|||
x_overlap_a = cinfo_a.local_overlap(cinfo_b) |
|||
x_overlap_b = cinfo_b.local_overlap(cinfo_a) |
|||
|
|||
overall_tangent = cinfo_b.center - cinfo_a.center |
|||
overall_angle = np.arctan2(overall_tangent[1], overall_tangent[0]) |
|||
|
|||
delta_angle = old_div(max(angle_dist(cinfo_a.angle, overall_angle), |
|||
angle_dist(cinfo_b.angle, overall_angle)) * 180,np.pi) |
|||
|
|||
# we want the largest overlap in x to be small |
|||
x_overlap = max(x_overlap_a, x_overlap_b) |
|||
|
|||
dist = np.linalg.norm(cinfo_b.point0 - cinfo_a.point1) |
|||
|
|||
if (dist > EDGE_MAX_LENGTH or |
|||
x_overlap > EDGE_MAX_OVERLAP or |
|||
delta_angle > EDGE_MAX_ANGLE): |
|||
return None |
|||
else: |
|||
score = dist + delta_angle*EDGE_ANGLE_COST |
|||
return (score, cinfo_a, cinfo_b) |
|||
|
|||
|
|||
def make_tight_mask(contour, xmin, ymin, width, height): |
|||
|
|||
tight_mask = np.zeros((height, width), dtype=np.uint8) |
|||
tight_contour = contour - np.array((xmin, ymin)).reshape((-1, 1, 2)) |
|||
|
|||
cv2.drawContours(tight_mask, [tight_contour], 0, |
|||
(1, 1, 1), -1) |
|||
|
|||
return tight_mask |
|||
|
|||
|
|||
def get_contours(name, small, pagemask, masktype): |
|||
|
|||
mask = get_mask(name, small, pagemask, masktype) |
|||
|
|||
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, |
|||
cv2.CHAIN_APPROX_NONE) |
|||
|
|||
contours_out = [] |
|||
|
|||
for contour in contours: |
|||
|
|||
rect = cv2.boundingRect(contour) |
|||
xmin, ymin, width, height = rect |
|||
|
|||
if (width < TEXT_MIN_WIDTH or |
|||
height < TEXT_MIN_HEIGHT or |
|||
width < TEXT_MIN_ASPECT*height): |
|||
continue |
|||
|
|||
tight_mask = make_tight_mask(contour, xmin, ymin, width, height) |
|||
|
|||
if tight_mask.sum(axis=0).max() > TEXT_MAX_THICKNESS: |
|||
continue |
|||
|
|||
contours_out.append(ContourInfo(contour, rect, tight_mask)) |
|||
|
|||
if DEBUG_LEVEL >= 2: |
|||
visualize_contours(name, small, contours_out) |
|||
|
|||
return contours_out |
|||
|
|||
|
|||
def assemble_spans(name, small, pagemask, cinfo_list): |
|||
|
|||
# sort list |
|||
cinfo_list = sorted(cinfo_list, key=lambda cinfo: cinfo.rect[1]) |
|||
|
|||
# generate all candidate edges |
|||
candidate_edges = [] |
|||
|
|||
for i, cinfo_i in enumerate(cinfo_list): |
|||
for j in range(i): |
|||
# note e is of the form (score, left_cinfo, right_cinfo) |
|||
edge = generate_candidate_edge(cinfo_i, cinfo_list[j]) |
|||
if edge is not None: |
|||
candidate_edges.append(edge) |
|||
|
|||
# sort candidate edges by score (lower is better) |
|||
candidate_edges.sort() |
|||
|
|||
# for each candidate edge |
|||
for _, cinfo_a, cinfo_b in candidate_edges: |
|||
# if left and right are unassigned, join them |
|||
if cinfo_a.succ is None and cinfo_b.pred is None: |
|||
cinfo_a.succ = cinfo_b |
|||
cinfo_b.pred = cinfo_a |
|||
|
|||
# generate list of spans as output |
|||
spans = [] |
|||
|
|||
# until we have removed everything from the list |
|||
while cinfo_list: |
|||
|
|||
# get the first on the list |
|||
cinfo = cinfo_list[0] |
|||
|
|||
# keep following predecessors until none exists |
|||
while cinfo.pred: |
|||
cinfo = cinfo.pred |
|||
|
|||
# start a new span |
|||
cur_span = [] |
|||
|
|||
width = 0.0 |
|||
|
|||
# follow successors til end of span |
|||
while cinfo: |
|||
# remove from list (sadly making this loop *also* O(n^2) |
|||
cinfo_list.remove(cinfo) |
|||
# add to span |
|||
cur_span.append(cinfo) |
|||
width += cinfo.local_xrng[1] - cinfo.local_xrng[0] |
|||
# set successor |
|||
cinfo = cinfo.succ |
|||
|
|||
# add if long enough |
|||
if width > SPAN_MIN_WIDTH: |
|||
spans.append(cur_span) |
|||
|
|||
if DEBUG_LEVEL >= 2: |
|||
visualize_spans(name, small, pagemask, spans) |
|||
|
|||
return spans |
|||
|
|||
|
|||
def sample_spans(shape, spans): |
|||
|
|||
span_points = [] |
|||
|
|||
for span in spans: |
|||
|
|||
contour_points = [] |
|||
|
|||
for cinfo in span: |
|||
|
|||
yvals = np.arange(cinfo.mask.shape[0]).reshape((-1, 1)) |
|||
totals = (yvals * cinfo.mask).sum(axis=0) |
|||
means = old_div(totals, cinfo.mask.sum(axis=0)) |
|||
|
|||
xmin, ymin = cinfo.rect[:2] |
|||
|
|||
step = SPAN_PX_PER_STEP |
|||
start = old_div(((len(means)-1) % step), 2) |
|||
|
|||
contour_points += [(x+xmin, means[x]+ymin) |
|||
for x in range(start, len(means), step)] |
|||
|
|||
contour_points = np.array(contour_points, |
|||
dtype=np.float32).reshape((-1, 1, 2)) |
|||
|
|||
contour_points = pix2norm(shape, contour_points) |
|||
|
|||
span_points.append(contour_points) |
|||
|
|||
return span_points |
|||
|
|||
|
|||
def keypoints_from_samples(name, small, pagemask, page_outline, |
|||
span_points): |
|||
|
|||
all_evecs = np.array([[0.0, 0.0]]) |
|||
all_weights = 0 |
|||
|
|||
for points in span_points: |
|||
|
|||
_, evec = cv2.PCACompute(points.reshape((-1, 2)), |
|||
None, maxComponents=1) |
|||
|
|||
weight = np.linalg.norm(points[-1] - points[0]) |
|||
|
|||
all_evecs += evec * weight |
|||
all_weights += weight |
|||
|
|||
evec = old_div(all_evecs, all_weights) |
|||
|
|||
x_dir = evec.flatten() |
|||
|
|||
if x_dir[0] < 0: |
|||
x_dir = -x_dir |
|||
|
|||
y_dir = np.array([-x_dir[1], x_dir[0]]) |
|||
|
|||
pagecoords = cv2.convexHull(page_outline) |
|||
pagecoords = pix2norm(pagemask.shape, pagecoords.reshape((-1, 1, 2))) |
|||
pagecoords = pagecoords.reshape((-1, 2)) |
|||
|
|||
px_coords = np.dot(pagecoords, x_dir) |
|||
py_coords = np.dot(pagecoords, y_dir) |
|||
|
|||
px0 = px_coords.min() |
|||
px1 = px_coords.max() |
|||
|
|||
py0 = py_coords.min() |
|||
py1 = py_coords.max() |
|||
|
|||
p00 = px0 * x_dir + py0 * y_dir |
|||
p10 = px1 * x_dir + py0 * y_dir |
|||
p11 = px1 * x_dir + py1 * y_dir |
|||
p01 = px0 * x_dir + py1 * y_dir |
|||
|
|||
corners = np.vstack((p00, p10, p11, p01)).reshape((-1, 1, 2)) |
|||
|
|||
ycoords = [] |
|||
xcoords = [] |
|||
|
|||
for points in span_points: |
|||
pts = points.reshape((-1, 2)) |
|||
px_coords = np.dot(pts, x_dir) |
|||
py_coords = np.dot(pts, y_dir) |
|||
ycoords.append(py_coords.mean() - py0) |
|||
xcoords.append(px_coords - px0) |
|||
|
|||
if DEBUG_LEVEL >= 2: |
|||
visualize_span_points(name, small, span_points, corners) |
|||
|
|||
return corners, np.array(ycoords), xcoords |
|||
|
|||
|
|||
def visualize_contours(name, small, cinfo_list): |
|||
|
|||
regions = np.zeros_like(small) |
|||
|
|||
for j, cinfo in enumerate(cinfo_list): |
|||
|
|||
cv2.drawContours(regions, [cinfo.contour], 0, |
|||
CCOLORS[j % len(CCOLORS)], -1) |
|||
|
|||
mask = (regions.max(axis=2) != 0) |
|||
|
|||
display = small.copy() |
|||
display[mask] = (old_div(display[mask],2)) + (old_div(regions[mask],2)) |
|||
|
|||
for j, cinfo in enumerate(cinfo_list): |
|||
color = CCOLORS[j % len(CCOLORS)] |
|||
color = tuple([old_div(c,4) for c in color]) |
|||
|
|||
cv2.circle(display, fltp(cinfo.center), 3, |
|||
(255, 255, 255), 1, cv2.LINE_AA) |
|||
|
|||
cv2.line(display, fltp(cinfo.point0), fltp(cinfo.point1), |
|||
(255, 255, 255), 1, cv2.LINE_AA) |
|||
|
|||
debug_show(name, 1, 'contours', display) |
|||
|
|||
|
|||
def visualize_spans(name, small, pagemask, spans): |
|||
|
|||
regions = np.zeros_like(small) |
|||
|
|||
for i, span in enumerate(spans): |
|||
contours = [cinfo.contour for cinfo in span] |
|||
cv2.drawContours(regions, contours, -1, |
|||
CCOLORS[i*3 % len(CCOLORS)], -1) |
|||
|
|||
mask = (regions.max(axis=2) != 0) |
|||
|
|||
display = small.copy() |
|||
display[mask] = (old_div(display[mask],2)) + (old_div(regions[mask],2)) |
|||
display[pagemask == 0] //= 4 |
|||
|
|||
debug_show(name, 2, 'spans', display) |
|||
|
|||
|
|||
def visualize_span_points(name, small, span_points, corners): |
|||
|
|||
display = small.copy() |
|||
|
|||
for i, points in enumerate(span_points): |
|||
|
|||
points = norm2pix(small.shape, points, False) |
|||
|
|||
mean, small_evec = cv2.PCACompute(points.reshape((-1, 2)), |
|||
None, |
|||
maxComponents=1) |
|||
|
|||
dps = np.dot(points.reshape((-1, 2)), small_evec.reshape((2, 1))) |
|||
dpm = np.dot(mean.flatten(), small_evec.flatten()) |
|||
|
|||
point0 = mean + small_evec * (dps.min()-dpm) |
|||
point1 = mean + small_evec * (dps.max()-dpm) |
|||
|
|||
for point in points: |
|||
cv2.circle(display, fltp(point), 3, |
|||
CCOLORS[i % len(CCOLORS)], -1, cv2.LINE_AA) |
|||
|
|||
cv2.line(display, fltp(point0), fltp(point1), |
|||
(255, 255, 255), 1, cv2.LINE_AA) |
|||
|
|||
cv2.polylines(display, [norm2pix(small.shape, corners, True)], |
|||
True, (255, 255, 255)) |
|||
|
|||
debug_show(name, 3, 'span points', display) |
|||
|
|||
|
|||
def imgsize(img): |
|||
height, width = img.shape[:2] |
|||
return '{}x{}'.format(width, height) |
|||
|
|||
|
|||
def make_keypoint_index(span_counts): |
|||
|
|||
nspans = len(span_counts) |
|||
npts = sum(span_counts) |
|||
keypoint_index = np.zeros((npts+1, 2), dtype=int) |
|||
start = 1 |
|||
|
|||
for i, count in enumerate(span_counts): |
|||
end = start + count |
|||
keypoint_index[start:start+end, 1] = 8+i |
|||
start = end |
|||
|
|||
keypoint_index[1:, 0] = np.arange(npts) + 8 + nspans |
|||
|
|||
return keypoint_index |
|||
|
|||
|
|||
def optimize_params(name, small, dstpoints, span_counts, params): |
|||
|
|||
keypoint_index = make_keypoint_index(span_counts) |
|||
|
|||
def objective(pvec): |
|||
ppts = project_keypoints(pvec, keypoint_index) |
|||
return np.sum((dstpoints - ppts)**2) |
|||
|
|||
print(' initial objective is', objective(params)) |
|||
|
|||
if DEBUG_LEVEL >= 1: |
|||
projpts = project_keypoints(params, keypoint_index) |
|||
display = draw_correspondences(small, dstpoints, projpts) |
|||
debug_show(name, 4, 'keypoints before', display) |
|||
|
|||
print(' optimizing', len(params), 'parameters...') |
|||
start = datetime.datetime.now() |
|||
res = scipy.optimize.minimize(objective, params, |
|||
method='Powell') |
|||
end = datetime.datetime.now() |
|||
print(' optimization took', round((end-start).total_seconds(), 2), 'sec.') |
|||
print(' final objective is', res.fun) |
|||
params = res.x |
|||
|
|||
if DEBUG_LEVEL >= 1: |
|||
projpts = project_keypoints(params, keypoint_index) |
|||
display = draw_correspondences(small, dstpoints, projpts) |
|||
debug_show(name, 5, 'keypoints after', display) |
|||
|
|||
return params |
|||
|
|||
|
|||
def get_page_dims(corners, rough_dims, params): |
|||
|
|||
dst_br = corners[2].flatten() |
|||
|
|||
dims = np.array(rough_dims) |
|||
|
|||
def objective(dims): |
|||
proj_br = project_xy(dims, params) |
|||
return np.sum((dst_br - proj_br.flatten())**2) |
|||
|
|||
res = scipy.optimize.minimize(objective, dims, method='Powell') |
|||
dims = res.x |
|||
|
|||
print(' got page dims', dims[0], 'x', dims[1]) |
|||
|
|||
return dims |
|||
|
|||
|
|||
def remap_image(name, img, small, page_dims, params): |
|||
|
|||
height = 0.5 * page_dims[1] * OUTPUT_ZOOM * img.shape[0] |
|||
height = round_nearest_multiple(height, REMAP_DECIMATE) |
|||
|
|||
width = round_nearest_multiple(old_div(height * page_dims[0], page_dims[1]), |
|||
REMAP_DECIMATE) |
|||
|
|||
print(' output will be {}x{}'.format(width, height)) |
|||
|
|||
height_small = old_div(height, REMAP_DECIMATE) |
|||
width_small = old_div(width, REMAP_DECIMATE) |
|||
|
|||
page_x_range = np.linspace(0, page_dims[0], width_small) |
|||
page_y_range = np.linspace(0, page_dims[1], height_small) |
|||
|
|||
page_x_coords, page_y_coords = np.meshgrid(page_x_range, page_y_range) |
|||
|
|||
page_xy_coords = np.hstack((page_x_coords.flatten().reshape((-1, 1)), |
|||
page_y_coords.flatten().reshape((-1, 1)))) |
|||
|
|||
page_xy_coords = page_xy_coords.astype(np.float32) |
|||
|
|||
image_points = project_xy(page_xy_coords, params) |
|||
image_points = norm2pix(img.shape, image_points, False) |
|||
|
|||
image_x_coords = image_points[:, 0, 0].reshape(page_x_coords.shape) |
|||
image_y_coords = image_points[:, 0, 1].reshape(page_y_coords.shape) |
|||
|
|||
image_x_coords = cv2.resize(image_x_coords, (width, height), |
|||
interpolation=cv2.INTER_CUBIC) |
|||
|
|||
image_y_coords = cv2.resize(image_y_coords, (width, height), |
|||
interpolation=cv2.INTER_CUBIC) |
|||
|
|||
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|||
|
|||
remapped = cv2.remap(img_gray, image_x_coords, image_y_coords, |
|||
cv2.INTER_CUBIC, |
|||
None, cv2.BORDER_REPLICATE) |
|||
|
|||
thresh = cv2.adaptiveThreshold(remapped, 255, cv2.ADAPTIVE_THRESH_MEAN_C, |
|||
cv2.THRESH_BINARY, ADAPTIVE_WINSZ, 25) |
|||
|
|||
pil_image = Image.fromarray(thresh) |
|||
pil_image = pil_image.convert('1') |
|||
|
|||
threshfile = name + '_thresh.png' |
|||
pil_image.save(threshfile, dpi=(OUTPUT_DPI, OUTPUT_DPI)) |
|||
|
|||
if DEBUG_LEVEL >= 1: |
|||
height = small.shape[0] |
|||
width = int(round(height * float(thresh.shape[1])/thresh.shape[0])) |
|||
display = cv2.resize(thresh, (width, height), |
|||
interpolation=cv2.INTER_AREA) |
|||
debug_show(name, 6, 'output', display) |
|||
|
|||
return threshfile |
|||
|
|||
|
|||
def main(): |
|||
|
|||
if len(sys.argv) < 2: |
|||
print('usage:', sys.argv[0], 'IMAGE1 [IMAGE2 ...]') |
|||
sys.exit(0) |
|||
|
|||
if DEBUG_LEVEL > 0 and DEBUG_OUTPUT != 'file': |
|||
cv2.namedWindow(WINDOW_NAME) |
|||
|
|||
outfiles = [] |
|||
|
|||
for imgfile in sys.argv[1:]: |
|||
|
|||
img = cv2.imread(imgfile) |
|||
small = resize_to_screen(img) |
|||
basename = os.path.basename(imgfile) |
|||
name, _ = os.path.splitext(basename) |
|||
|
|||
print('loaded', basename, 'with size', imgsize(img), end=' ') |
|||
print('and resized to', imgsize(small)) |
|||
|
|||
if DEBUG_LEVEL >= 3: |
|||
debug_show(name, 0.0, 'original', small) |
|||
|
|||
pagemask, page_outline = get_page_extents(small) |
|||
|
|||
cinfo_list = get_contours(name, small, pagemask, 'text') |
|||
spans = assemble_spans(name, small, pagemask, cinfo_list) |
|||
|
|||
if len(spans) < 3: |
|||
print(' detecting lines because only', len(spans), 'text spans') |
|||
cinfo_list = get_contours(name, small, pagemask, 'line') |
|||
spans2 = assemble_spans(name, small, pagemask, cinfo_list) |
|||
if len(spans2) > len(spans): |
|||
spans = spans2 |
|||
|
|||
if len(spans) < 1: |
|||
print('skipping', name, 'because only', len(spans), 'spans') |
|||
continue |
|||
|
|||
span_points = sample_spans(small.shape, spans) |
|||
|
|||
print(' got', len(spans), 'spans', end=' ') |
|||
print('with', sum([len(pts) for pts in span_points]), 'points.') |
|||
|
|||
corners, ycoords, xcoords = keypoints_from_samples(name, small, |
|||
pagemask, |
|||
page_outline, |
|||
span_points) |
|||
|
|||
rough_dims, span_counts, params = get_default_params(corners, |
|||
ycoords, xcoords) |
|||
|
|||
dstpoints = np.vstack((corners[0].reshape((1, 1, 2)),) + |
|||
tuple(span_points)) |
|||
|
|||
params = optimize_params(name, small, |
|||
dstpoints, |
|||
span_counts, params) |
|||
|
|||
page_dims = get_page_dims(corners, rough_dims, params) |
|||
|
|||
outfile = remap_image(name, img, small, page_dims, params) |
|||
|
|||
outfiles.append(outfile) |
|||
|
|||
print(' wrote', outfile) |
|||
print() |
|||
|
|||
print('to convert to PDF (requires ImageMagick):') |
|||
print(' convert -compress Group4 ' + ' '.join(outfiles) + ' output.pdf') |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
main() |
@ -0,0 +1,5 @@ |
|||
numpy |
|||
scipy |
|||
Pillow |
|||
opencv-python |
|||
future |
@ -1 +0,0 @@ |
|||
Subproject commit 734d21ad596000cff276ccaf118954362b5eb37e |
@ -0,0 +1,24 @@ |
|||
The following license agreement applies to ellipse.py and rectify_ellipse.py; |
|||
also see the licensing information at the top of moments_from_contour.py. |
|||
|
|||
MIT License |
|||
|
|||
Copyright (c) 2016, Matt Zucker |
|||
|
|||
Permission is hereby granted, free of charge, to any person obtaining a copy |
|||
of this software and associated documentation files (the "Software"), to deal |
|||
in the Software without restriction, including without limitation the rights |
|||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|||
copies of the Software, and to permit persons to whom the Software is |
|||
furnished to do so, subject to the following conditions: |
|||
|
|||
The above copyright notice and this permission notice shall be included in all |
|||
copies or substantial portions of the Software. |
|||
|
|||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|||
SOFTWARE. |
@ -0,0 +1,16 @@ |
|||
# unproject_text |
|||
Perspective recovery of text using transformed ellipses. See full writeup at <https://mzucker.github.io/2016/10/11/unprojecting-text-with-ellipses.html> |
|||
|
|||
# Requirements |
|||
|
|||
- Python 2 or 3 |
|||
- NumPy |
|||
- SciPy |
|||
- cv2 (from OpenCV 3.0 or later) |
|||
- matplotlib |
|||
|
|||
# Usage |
|||
|
|||
Try running |
|||
|
|||
python unproject_text.py deskew0.jpg |
@ -0,0 +1,630 @@ |
|||
#!/usr/bin/env python |
|||
# -*- coding: utf-8 -*- |
|||
|
|||
'''Functions for representing ellipses using various |
|||
parameterizations, and converting between them. There are three |
|||
parameterizations implemented by this module: |
|||
|
|||
Geometric parameters: |
|||
--------------------- |
|||
|
|||
The geometric parameters are |
|||
|
|||
(x₀, y₀, a, b, θ) |
|||
|
|||
The most simple parameterization of an ellipse is by its center point |
|||
(x0, y0), its semimajor and semiminor axes a and b, and its rotation |
|||
angle θ. |
|||
|
|||
Conic: |
|||
------ |
|||
|
|||
This parameterization consists of six parameters A-F which establish |
|||
the implicit equation for a general conic: |
|||
|
|||
AX² + BXY + CY² + DX + EY + F = 0 |
|||
|
|||
Note that this equation may not represent only ellipses (it also |
|||
includes hyperbolas and parabolas). |
|||
|
|||
Since multiplying the entire equation by any non-zero constant results |
|||
in the same ellipse, the six parameters are only described up to |
|||
scale, yielding five degrees of freedom. We can determine a canonical |
|||
scale factor k to scale this equation by such that |
|||
|
|||
A = a²(sin θ)² + b²(cos θ)² |
|||
B = 2(b² - a²) sin θ cos θ |
|||
C = a²(cos θ)² + b²(sin θ)² |
|||
D = -2Ax₀ - By₀ |
|||
E = -Bx₀ - 2Cy₀ |
|||
F = Ax₀² + Bx₀y₀ + Cy₀² - a²b² |
|||
|
|||
...in terms of the geometric parameters (x₀, y₀, a, b, θ). |
|||
|
|||
Shape moments: |
|||
-------------- |
|||
|
|||
The shape moment parameters are |
|||
|
|||
(m₀₀, m₁₀, m₀₁, mu₂₀, mu₁₁, mu₀₂) |
|||
|
|||
An ellipse may be completely specified by its shape moments up to |
|||
order 2. These include the area m₀₀, area-weighted center (m₁₀, m₀₁), |
|||
and the three second order central moments (mu₂₀, mu₁₁, mu₀₂). |
|||
|
|||
''' |
|||
|
|||
# pylint: disable=C0103 |
|||
# pylint: disable=R0914 |
|||
# pylint: disable=E1101 |
|||
|
|||
from __future__ import print_function |
|||
|
|||
import numpy |
|||
|
|||
def _params_str(names, params): |
|||
|
|||
'''Helper function for printing out the various parameters.''' |
|||
|
|||
return '({})'.format(', '.join('{}: {:g}'.format(n, p) |
|||
for (n, p) in zip(names, params))) |
|||
|
|||
###################################################################### |
|||
|
|||
GPARAMS_NAMES = ('x0', 'y0', 'a', 'b', 'theta') |
|||
GPARAMS_DISPLAY_NAMES = ('x₀', 'y₀', 'a', 'b', 'θ') |
|||
|
|||
def gparams_str(gparams): |
|||
'''Convert geometric parameters to nice printable string.''' |
|||
return _params_str(GPARAMS_DISPLAY_NAMES, gparams) |
|||
|
|||
def gparams_evaluate(gparams, phi): |
|||
|
|||
'''Evaluate the parametric formula for an ellipse at each angle |
|||
specified in the phi array. Returns two arrays x and y of the same |
|||
size as phi. |
|||
|
|||
''' |
|||
|
|||
x0, y0, a, b, theta = tuple(gparams) |
|||
|
|||
c = numpy.cos(theta) |
|||
s = numpy.sin(theta) |
|||
|
|||
cp = numpy.cos(phi) |
|||
sp = numpy.sin(phi) |
|||
|
|||
x = a*cp*c - b*sp*s + x0 |
|||
y = a*cp*s + b*sp*c + y0 |
|||
|
|||
return x, y |
|||
|
|||
def gparams_from_conic(conic): |
|||
|
|||
'''Convert the given conic parameters to geometric ellipse parameters.''' |
|||
|
|||
k, ab = conic_scale(conic) |
|||
|
|||
if numpy.isinf(ab): |
|||
return None |
|||
|
|||
A, B, C, D, E, F = tuple(conic) |
|||
|
|||
T = B**2 - 4*A*C |
|||
|
|||
x0 = (2*C*D - B*E)/T |
|||
y0 = (2*A*E - B*D)/T |
|||
|
|||
S = A*E**2 + C*D**2 - B*D*E + (B**2 - 4*A*C)*F |
|||
U = numpy.sqrt((A - C)**2 + B**2) |
|||
|
|||
a = -numpy.sqrt(2*S*(A+C+U))/T |
|||
b = -numpy.sqrt(2*S*(A+C-U))/T |
|||
|
|||
theta = numpy.arctan2(C-A-U, B) |
|||
|
|||
return numpy.array((x0, y0, a, b, theta)) |
|||
|
|||
def _gparams_sincos_from_moments(m): |
|||
|
|||
'''Convert from moments to canonical parameters, except postpone the |
|||
final arctan until later. Formulas determined largely by trial and |
|||
error. |
|||
|
|||
''' |
|||
|
|||
m00, m10, m01, mu20, mu11, mu02 = tuple(m) |
|||
|
|||
x0 = m10 / m00 |
|||
y0 = m01 / m00 |
|||
|
|||
A = 4*mu02/m00 |
|||
B = -8*mu11/m00 |
|||
C = 4*mu20/m00 |
|||
|
|||
U = numpy.sqrt((A - C)**2 + B**2) |
|||
T = B**2 - 4*A*C |
|||
S = 1.0 |
|||
|
|||
a = -numpy.sqrt(2*S*(A+C+U))/T |
|||
b = -numpy.sqrt(2*S*(A+C-U))/T |
|||
|
|||
# we want a * b * pi = m00 |
|||
# |
|||
# so if we are off by some factor, we should scale a and b by this factor |
|||
# |
|||
# we need to fix things up somehow because moments have 6 DOF and |
|||
# ellipse has only 5. |
|||
area = numpy.pi * a * b |
|||
scl = numpy.sqrt(m00 / area) |
|||
a *= scl |
|||
b *= scl |
|||
|
|||
sincos = numpy.array([C-A-U, B]) |
|||
sincos /= numpy.linalg.norm(sincos) |
|||
|
|||
s, c = sincos |
|||
|
|||
return numpy.array((x0, y0, a, b, s, c)) |
|||
|
|||
def gparams_from_moments(m): |
|||
|
|||
'''Convert the given moment parameters to geometric ellipse parameters. |
|||
Formula derived through trial and error.''' |
|||
|
|||
x0, y0, a, b, s, c = _gparams_sincos_from_moments(m) |
|||
|
|||
theta = numpy.arctan2(s, c) |
|||
|
|||
return numpy.array((x0, y0, a, b, theta)) |
|||
|
|||
###################################################################### |
|||
|
|||
CONIC_NAMES = ('A', 'B', 'C', 'D', 'E', 'F') |
|||
CONIC_DISPLAY_NAMES = ('A', 'B', 'C', 'D', 'E', 'F') |
|||
|
|||
def conic_str(conic): |
|||
|
|||
'''Convert conic parameters to nice printable string.''' |
|||
return _params_str(CONIC_DISPLAY_NAMES, conic) |
|||
|
|||
def conic_scale(conic): |
|||
|
|||
'''Returns a pair (k, ab) for the given conic parameters, where k is |
|||
the scale factor to divide all parameters by in order to normalize |
|||
them, and ab is the product of the semimajor and semiminor axis |
|||
(i.e. the ellipse's area, divided by pi). If the conic does not |
|||
describe an ellipse, then this returns infinity, infinity. |
|||
|
|||
''' |
|||
|
|||
A, B, C, D, E, F = tuple(conic) |
|||
|
|||
T = 4*A*C - B*B |
|||
|
|||
if T < 0.0: |
|||
return numpy.inf, numpy.inf |
|||
|
|||
S = A*E**2 + B**2*F + C*D**2 - B*D*E - 4*A*C*F |
|||
|
|||
if not S: |
|||
return numpy.inf, numpy.inf |
|||
|
|||
|
|||
k = 0.25*T**2/S |
|||
ab = 2.0*S/(T*numpy.sqrt(T)) |
|||
|
|||
return k, ab |
|||
|
|||
def conic_from_points(x, y): |
|||
|
|||
'''Fits conic pararameters using homogeneous least squares. The |
|||
resulting fit is unlikely to be numerically robust when the x/y |
|||
coordinates given are far from the [-1,1] interval.''' |
|||
|
|||
x = x.reshape((-1, 1)) |
|||
y = y.reshape((-1, 1)) |
|||
|
|||
M = numpy.hstack((x**2, x*y, y**2, x, y, numpy.ones_like(x))) |
|||
|
|||
_, _, v = numpy.linalg.svd(M) |
|||
|
|||
return v[5, :].copy() |
|||
|
|||
def conic_transform(conic, H): |
|||
|
|||
'''Returns the parameters of a conic after being transformed through a |
|||
3x3 homography H. This is straightforward since a conic can be |
|||
represented as a symmetric matrix (see |
|||
https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections). |
|||
|
|||
''' |
|||
|
|||
A, B, C, D, E, F = tuple(conic) |
|||
|
|||
M = numpy.array([[A, 0.5*B, 0.5*D], |
|||
[0.5*B, C, 0.5*E], |
|||
[0.5*D, 0.5*E, F]]) |
|||
|
|||
Hinv = numpy.linalg.inv(H) |
|||
|
|||
M = numpy.dot(Hinv.T, numpy.dot(M, Hinv)) |
|||
|
|||
A = M[0, 0] |
|||
B = M[0, 1]*2 |
|||
C = M[1, 1] |
|||
D = M[0, 2]*2 |
|||
E = M[1, 2]*2 |
|||
F = M[2, 2] |
|||
|
|||
return numpy.array((A, B, C, D, E, F)) |
|||
|
|||
def _conic_from_gparams_sincos(gparams_sincos): |
|||
|
|||
x0, y0, a, b, s, c = gparams_sincos |
|||
|
|||
A = a**2 * s**2 + b**2 * c**2 |
|||
B = 2*(b**2 - a**2) * s * c |
|||
C = a**2 * c**2 + b**2 * s**2 |
|||
D = -2*A*x0 - B*y0 |
|||
E = -B*x0 - 2*C*y0 |
|||
F = A*x0**2 + B*x0*y0 + C*y0**2 - a**2*b**2 |
|||
|
|||
return numpy.array((A, B, C, D, E, F)) |
|||
|
|||
def conic_from_gparams(gparams): |
|||
|
|||
'''Convert geometric parameters to conic parameters. Formulas from |
|||
https://en.wikipedia.org/wiki/Ellipse#General_ellipse. |
|||
|
|||
''' |
|||
|
|||
x0, y0, a, b, theta = tuple(gparams) |
|||
c = numpy.cos(theta) |
|||
s = numpy.sin(theta) |
|||
|
|||
return _conic_from_gparams_sincos((x0, y0, a, b, s, c)) |
|||
|
|||
def conic_from_moments(moments): |
|||
|
|||
g = _gparams_sincos_from_moments(moments) |
|||
|
|||
return _conic_from_gparams_sincos(g) |
|||
|
|||
###################################################################### |
|||
|
|||
MOMENTS_NAMES = ('m00', 'm10', 'm01', 'mu20', 'mu11', 'mu02') |
|||
MOMENTS_DISPLAY_NAMES = ('m₀₀', 'm₁₀', 'm₀₁', 'mu₂₀', 'mu₁₁', 'mu₀₂') |
|||
|
|||
def moments_from_dict(m): |
|||
|
|||
'''Create shape moments tuple from a dictionary (i.e. returned by cv2.moments).''' |
|||
return numpy.array([m[n] for n in MOMENTS_NAMES]) |
|||
|
|||
def moments_str(m): |
|||
'''Convert shape moments to nice printable string.''' |
|||
return _params_str(MOMENTS_DISPLAY_NAMES, m) |
|||
|
|||
|
|||
def moments_from_gparams(gparams): |
|||
|
|||
'''Create shape moments from geometric parameters.''' |
|||
x0, y0, a, b, theta = tuple(gparams) |
|||
c = numpy.cos(theta) |
|||
s = numpy.sin(theta) |
|||
|
|||
m00 = a*b*numpy.pi |
|||
m10 = x0 * m00 |
|||
m01 = y0 * m00 |
|||
|
|||
mu20 = (a**2 * c**2 + b**2 * s**2) * m00 * 0.25 |
|||
mu11 = -(b**2-a**2) * s * c * m00 * 0.25 |
|||
mu02 = (a**2 * s**2 + b**2 * c**2) * m00 * 0.25 |
|||
|
|||
return numpy.array((m00, m10, m01, mu20, mu11, mu02)) |
|||
|
|||
def moments_from_conic(scaled_conic): |
|||
|
|||
'''Create shape moments from conic parameters.''' |
|||
|
|||
k, ab = conic_scale(scaled_conic) |
|||
|
|||
if numpy.isinf(ab): |
|||
return None |
|||
|
|||
conic = numpy.array(scaled_conic)/k |
|||
|
|||
A, B, C, D, E, _ = tuple(conic) |
|||
|
|||
x0 = (B*E - 2*C*D)/(4*A*C - B**2) |
|||
y0 = (-2*A*E + B*D)/(4*A*C - B**2) |
|||
|
|||
m00 = numpy.pi*ab |
|||
m10 = x0*m00 |
|||
m01 = y0*m00 |
|||
|
|||
mu20 = 0.25*C*m00 |
|||
mu11 = -0.125*B*m00 |
|||
mu02 = 0.25*A*m00 |
|||
|
|||
return numpy.array((m00, m10, m01, mu20, mu11, mu02)) |
|||
|
|||
|
|||
###################################################################### |
|||
|
|||
def _perspective_transform(pts, H): |
|||
|
|||
'''Used for testing only.''' |
|||
|
|||
assert len(pts.shape) == 3 |
|||
assert pts.shape[1:] == (1, 2) |
|||
|
|||
pts = numpy.hstack((pts.reshape((-1, 2)), |
|||
numpy.ones((len(pts), 1), dtype=pts.dtype))) |
|||
|
|||
pts = numpy.dot(pts, H.T) |
|||
|
|||
pts = pts[:, :2] / pts[:, 2].reshape((-1, 1)) |
|||
|
|||
return pts.reshape((-1, 1, 2)) |
|||
|
|||
def _test_moments(): |
|||
|
|||
# so I just realized that moments have actually 6 DOF but all |
|||
# ellipse parameterizations have 5, therefore information is lost |
|||
# when going back and forth. |
|||
|
|||
m = numpy.array([59495.5, 5.9232e+07, 1.84847e+07, 3.34079e+08, -1.94055e+08, 3.74633e+08]) |
|||
gp = gparams_from_moments(m) |
|||
|
|||
m2 = moments_from_gparams(gp) |
|||
gp2 = gparams_from_moments(m2) |
|||
|
|||
c = conic_from_moments(m) |
|||
m3 = moments_from_conic(c) |
|||
|
|||
assert numpy.allclose(gp, gp2) |
|||
assert numpy.allclose(m2, m3) |
|||
|
|||
print('here is the first thing:') |
|||
print(' {}'.format(moments_str(m))) |
|||
print() |
|||
print('the rest should all be equal pairs:') |
|||
print(' {}'.format(moments_str(m2))) |
|||
print(' {}'.format(moments_str(m3))) |
|||
print() |
|||
print(' {}'.format(gparams_str(gp))) |
|||
print(' {}'.format(gparams_str(gp2))) |
|||
print() |
|||
|
|||
|
|||
def _test_ellipse(): |
|||
|
|||
print('testing moments badness') |
|||
_test_moments() |
|||
print('pass') |
|||
|
|||
# test that we can go from conic to geometric and back |
|||
x0 = 450 |
|||
y0 = 320 |
|||
a = 300 |
|||
b = 200 |
|||
theta = -0.25 |
|||
|
|||
gparams = numpy.array((x0, y0, a, b, theta)) |
|||
|
|||
conic = conic_from_gparams(gparams) |
|||
k, ab = conic_scale(conic) |
|||
|
|||
# ensure conic created from geometric params has trivial scale |
|||
assert numpy.allclose((k, ab), (1.0, a*b)) |
|||
|
|||
# evaluate parametric curve at different angles phi |
|||
phi = numpy.linspace(0, 2*numpy.pi, 1001).reshape((-1, 1)) |
|||
x, y = gparams_evaluate(gparams, phi) |
|||
|
|||
# evaluate implicit conic formula at x,y pairs |
|||
M = numpy.hstack((x**2, x*y, y**2, x, y, numpy.ones_like(x))) |
|||
implicit_output = numpy.dot(M, conic) |
|||
implicit_max = numpy.abs(implicit_output).max() |
|||
|
|||
# ensure implicit evaluates near 0 everywhere |
|||
print('max item from implicit: {} (should be close to 0)'.format(implicit_max)) |
|||
print() |
|||
|
|||
assert implicit_max < 1e-5 |
|||
|
|||
# ensure that scaled_conic has the scale we expect |
|||
k = 1e-3 |
|||
scaled_conic = conic*k |
|||
|
|||
k2, ab2 = conic_scale(scaled_conic) |
|||
|
|||
print('these should all be equal:') |
|||
print() |
|||
print(' k =', k) |
|||
print(' k2 =', k2) |
|||
assert numpy.allclose((k2, ab2), (k, a*b)) |
|||
print() |
|||
|
|||
# convert the scaled conic back to geometric parameters |
|||
gparams2 = gparams_from_conic(scaled_conic) |
|||
|
|||
print(' gparams =', gparams_str(gparams)) |
|||
|
|||
# ensure that converting back from scaled conic to geometric params is correct |
|||
print(' gparams2 =', gparams_str(gparams2)) |
|||
assert numpy.allclose(gparams, gparams2) |
|||
|
|||
# convert original geometric parameters to moments |
|||
m = moments_from_gparams(gparams) |
|||
# ...and back |
|||
gparams3 = gparams_from_moments(m) |
|||
|
|||
# ensure that converting back from moments to geometric params is correct |
|||
print(' gparams3 =', gparams_str(gparams3)) |
|||
print() |
|||
assert numpy.allclose(gparams, gparams3) |
|||
|
|||
# convert moments parameterization to conic |
|||
conic2 = conic_from_moments(m) |
|||
|
|||
# ensure that converting from moments to conics is correct |
|||
print(' conic =', conic_str(conic)) |
|||
print(' conic2 =', conic_str(conic2)) |
|||
assert numpy.allclose(conic, conic2) |
|||
|
|||
# create conic from homogeneous least squares fit of points |
|||
skip = len(x) / 10 |
|||
conic3 = conic_from_points(x[::skip], y[::skip]) |
|||
|
|||
# ensure that it has non-infinite area |
|||
k3, ab3 = conic_scale(conic3) |
|||
assert not numpy.isinf(ab3) |
|||
|
|||
# normalize |
|||
conic3 /= k3 |
|||
|
|||
# ensure that conic from HLS fit is same as other 2 |
|||
print(' conic3 =', conic_str(conic3)) |
|||
print() |
|||
assert numpy.allclose(conic, conic3) |
|||
|
|||
# convert from conic to moments |
|||
m2 = moments_from_conic(scaled_conic) |
|||
|
|||
print(' m =', moments_str(m)) |
|||
|
|||
# ensure that conics->moments yields the same result as geometric |
|||
# params -> moments. |
|||
print(' m2 =', moments_str(m2)) |
|||
assert numpy.allclose(m, m2) |
|||
|
|||
from moments_from_contour import moments_from_contour |
|||
|
|||
# create moments from contour |
|||
pts = numpy.hstack((x, y)).reshape((-1, 1, 2)) |
|||
m3 = moments_from_contour(pts) |
|||
|
|||
# ensure that moments from contour is reasonably close to moments |
|||
# from geometric params. |
|||
print(' m3 =', moments_str(m3)) |
|||
print() |
|||
assert numpy.allclose(m3, m, 1e-4, 1e-4) |
|||
|
|||
# create a homography H to map the ellipse through |
|||
hx = 0.001 |
|||
hy = 0.0015 |
|||
|
|||
H = numpy.array([ |
|||
[1, -0.2, 0], |
|||
[0, 0.7, 0], |
|||
[hx, hy, 1]]) |
|||
|
|||
T = numpy.array([ |
|||
[1, 0, 400], |
|||
[0, 1, 300], |
|||
[0, 0, 1]]) |
|||
|
|||
H = numpy.dot(T, numpy.dot(H, numpy.linalg.inv(T))) |
|||
|
|||
# transform the original points thru H |
|||
Hpts = _perspective_transform(pts, H) |
|||
|
|||
# transform the conic parameters directly thru H |
|||
Hconic = conic_transform(conic, H) |
|||
|
|||
# get the HLS fit of the conic corresponding to the transformed points |
|||
Hconic2 = conic_from_points(Hpts[::skip, :, 0], Hpts[::skip, :, 1]) |
|||
|
|||
# normalize the two conics |
|||
Hk, Hab = conic_scale(Hconic) |
|||
Hk2, Hab2 = conic_scale(Hconic2) |
|||
assert not numpy.isinf(Hab) and not numpy.isinf(Hab2) |
|||
|
|||
Hconic /= Hk |
|||
Hconic2 /= Hk2 |
|||
|
|||
# ensure that the two conics are equal |
|||
print(' Hconic =', conic_str(Hconic)) |
|||
print(' Hconic2 =', conic_str(Hconic2)) |
|||
print() |
|||
assert numpy.allclose(Hconic, Hconic2) |
|||
|
|||
# get the moments from Hconic |
|||
Hm = moments_from_conic(Hconic) |
|||
|
|||
# get the moments from the transformed points |
|||
Hm2 = moments_from_contour(Hpts) |
|||
|
|||
# ensure that the two moments are close enough |
|||
print(' Hm =', moments_str(Hm)) |
|||
print(' Hm2 =', moments_str(Hm2)) |
|||
print() |
|||
assert numpy.allclose(Hm, Hm2, 1e-4, 1e-4) |
|||
|
|||
# tests complete, now visualize |
|||
print('all tests passed!') |
|||
|
|||
try: |
|||
import cv2 |
|||
print('visualizing results...') |
|||
except ImportError: |
|||
import sys |
|||
print('not visualizing results since module cv2 not found') |
|||
sys.exit(0) |
|||
|
|||
shift = 3 |
|||
pow2 = 2**shift |
|||
|
|||
p0 = numpy.array([x0, y0], dtype=numpy.float32) |
|||
p1 = _perspective_transform(p0.reshape((-1, 1, 2)), H).flatten() |
|||
|
|||
Hgparams = gparams_from_conic(Hconic) |
|||
Hp0 = Hgparams[:2] |
|||
|
|||
skip = len(pts)/100 |
|||
|
|||
display = numpy.zeros((600, 800, 3), numpy.uint8) |
|||
|
|||
def _asint(x, as_tuple=True): |
|||
x = x*pow2 + 0.5 |
|||
x = x.astype(int) |
|||
if as_tuple: |
|||
return tuple(x) |
|||
else: |
|||
return x |
|||
|
|||
for (a, b) in zip(pts.reshape((-1, 2))[::skip], |
|||
Hpts.reshape((-1, 2))[::skip]): |
|||
|
|||
cv2.line(display, _asint(a), _asint(b), |
|||
(255, 0, 255), 1, cv2.LINE_AA, shift) |
|||
|
|||
cv2.polylines(display, [_asint(pts, False)], True, |
|||
(0, 255, 0), 1, cv2.LINE_AA, shift) |
|||
|
|||
cv2.polylines(display, [_asint(Hpts, False)], True, |
|||
(0, 0, 255), 1, cv2.LINE_AA, shift) |
|||
|
|||
r = 3.0 |
|||
|
|||
cv2.circle(display, _asint(p0), int(r*pow2+0.5), |
|||
(0, 255, 0), 1, cv2.LINE_AA, shift) |
|||
|
|||
cv2.circle(display, _asint(p1), int(r*pow2+0.5), |
|||
(255, 0, 255), 1, cv2.LINE_AA, shift) |
|||
|
|||
cv2.circle(display, _asint(Hp0), int(r*pow2+0.5), |
|||
(0, 0, 255), 1, cv2.LINE_AA, shift) |
|||
|
|||
cv2.imshow('win', display) |
|||
|
|||
print('click in the display window & hit any key to quit.') |
|||
|
|||
while cv2.waitKey(5) < 0: |
|||
pass |
|||
|
|||
if __name__ == '__main__': |
|||
|
|||
_test_ellipse() |
@ -0,0 +1,123 @@ |
|||
'''The function below is ported from the OpenCV project's |
|||
contourMoments function in opencv/modules/imgproc/src/moments.cpp, |
|||
licensed as follows: |
|||
|
|||
---------------------------------------------------------------------- |
|||
|
|||
By downloading, copying, installing or using the software you agree to |
|||
this license. If you do not agree to this license, do not download, |
|||
install, copy or use the software. |
|||
|
|||
|
|||
License Agreement |
|||
For Open Source Computer Vision Library |
|||
(3-clause BSD License) |
|||
|
|||
Copyright (C) 2000-2016, Intel Corporation, all rights reserved. |
|||
Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|||
Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved. |
|||
Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. |
|||
Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved. |
|||
Copyright (C) 2015-2016, Itseez Inc., all rights reserved. |
|||
Third party copyrights are property of their respective owners. |
|||
|
|||
Redistribution and use in source and binary forms, with or without |
|||
modification, are permitted provided that the following conditions are |
|||
met: |
|||
|
|||
* Redistributions of source code must retain the above copyright |
|||
notice, this list of conditions and the following disclaimer. |
|||
|
|||
* Redistributions in binary form must reproduce the above copyright |
|||
notice, this list of conditions and the following disclaimer in |
|||
the documentation and/or other materials provided with the |
|||
distribution. |
|||
|
|||
* Neither the names of the copyright holders nor the names of the |
|||
contributors may be used to endorse or promote products derived |
|||
from this software without specific prior written permission. |
|||
|
|||
This software is provided by the copyright holders and contributors |
|||
"as is" and any express or implied warranties, including, but not |
|||
limited to, the implied warranties of merchantability and fitness for |
|||
a particular purpose are disclaimed. In no event shall copyright |
|||
holders or contributors be liable for any direct, indirect, |
|||
incidental, special, exemplary, or consequential damages (including, |
|||
but not limited to, procurement of substitute goods or services; loss |
|||
of use, data, or profits; or business interruption) however caused and |
|||
on any theory of liability, whether in contract, strict liability, or |
|||
tort (including negligence or otherwise) arising in any way out of the |
|||
use of this software, even if advised of the possibility of such |
|||
damage. |
|||
|
|||
''' |
|||
|
|||
|
|||
def moments_from_contour(xypoints): |
|||
|
|||
'''Create shape moments from points sampled from the outline of an |
|||
ellipse (note this is numerically inaccurate even for arrays of 1000s |
|||
of points). Included in this project primarily for testing purposes. |
|||
|
|||
''' |
|||
|
|||
assert len(xypoints.shape) == 3 |
|||
assert xypoints.shape[1:] == (1, 2) |
|||
|
|||
xypoints = xypoints.reshape((-1, 2)) |
|||
|
|||
a00 = 0 |
|||
a10 = 0 |
|||
a01 = 0 |
|||
a20 = 0 |
|||
a11 = 0 |
|||
a02 = 0 |
|||
|
|||
xi_1, yi_1 = xypoints[-1] |
|||
|
|||
for xy in xypoints: |
|||
|
|||
xi, yi = xy |
|||
xi2 = xi * xi |
|||
yi2 = yi * yi |
|||
dxy = xi_1 * yi - xi * yi_1 |
|||
xii_1 = xi_1 + xi |
|||
yii_1 = yi_1 + yi |
|||
|
|||
a00 += dxy |
|||
a10 += dxy * xii_1 |
|||
a01 += dxy * yii_1 |
|||
a20 += dxy * (xi_1 * xii_1 + xi2) |
|||
a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi)) |
|||
a02 += dxy * (yi_1 * yii_1 + yi2) |
|||
|
|||
xi_1 = xi |
|||
yi_1 = yi |
|||
|
|||
if a00 > 0: |
|||
db1_2 = 0.5 |
|||
db1_6 = 0.16666666666666666666666666666667 |
|||
db1_12 = 0.083333333333333333333333333333333 |
|||
db1_24 = 0.041666666666666666666666666666667 |
|||
else: |
|||
db1_2 = -0.5 |
|||
db1_6 = -0.16666666666666666666666666666667 |
|||
db1_12 = -0.083333333333333333333333333333333 |
|||
db1_24 = -0.041666666666666666666666666666667 |
|||
|
|||
m00 = a00 * db1_2 |
|||
m10 = a10 * db1_6 |
|||
m01 = a01 * db1_6 |
|||
m20 = a20 * db1_12 |
|||
m11 = a11 * db1_24 |
|||
m02 = a02 * db1_12 |
|||
|
|||
inv_m00 = 1. / m00 |
|||
cx = m10 * inv_m00 |
|||
cy = m01 * inv_m00 |
|||
|
|||
mu20 = m20 - m10 * cx |
|||
mu11 = m11 - m10 * cy |
|||
mu02 = m02 - m01 * cy |
|||
|
|||
return m00, m10, m01, mu20, mu11, mu02 |
@ -0,0 +1,5 @@ |
|||
unproject_text |
|||
cv2 |
|||
numpy |
|||
scipy |
|||
matplotlib |
@ -0,0 +1,504 @@ |
|||
#!/usr/bin/env python |
|||
# -*- coding: utf-8 -*- |
|||
|
|||
from __future__ import unicode_literals, print_function |
|||
|
|||
import sys |
|||
import numpy as np |
|||
import scipy.optimize |
|||
import matplotlib.pyplot as plt |
|||
import cv2 |
|||
import ellipse |
|||
|
|||
DEBUG_IMAGES = [] |
|||
|
|||
def debug_show(name, src): |
|||
|
|||
global DEBUG_IMAGES |
|||
|
|||
filename = 'debug{:02d}_{}.png'.format(len(DEBUG_IMAGES), name) |
|||
cv2.imwrite(filename, src) |
|||
|
|||
h, w = src.shape[:2] |
|||
|
|||
fx = w/1280.0 |
|||
fy = h/700.0 |
|||
|
|||
f = 1.0/np.ceil(max(fx, fy)) |
|||
|
|||
if f < 1.0: |
|||
img = cv2.resize(src, (0, 0), None, f, f, cv2.INTER_AREA) |
|||
else: |
|||
img = src.copy() |
|||
|
|||
DEBUG_IMAGES.append(img) |
|||
|
|||
def translation(x, y): |
|||
return np.array([[1, 0, x], [0, 1, y], [0, 0, 1]], dtype=float) |
|||
|
|||
def rotation(theta): |
|||
c = np.cos(theta) |
|||
s = np.sin(theta) |
|||
return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]], dtype=float) |
|||
|
|||
def perspective_warp(a, b): |
|||
return np.array([[1, 0, 0], [0, 1, 0], [a, b, 1]], dtype=float) |
|||
|
|||
def slant(sx): |
|||
return np.array([[1, sx, 0], [0, 1, 0], [0, 0, 1]], dtype=float) |
|||
|
|||
def softmax(x, k=1.0): |
|||
b = x.max() |
|||
return np.log( np.exp(k*(x-b)).sum() ) / k + b |
|||
|
|||
def skewed_widths(contours, H): |
|||
xvals = [] |
|||
for c in contours: |
|||
pts = cv2.perspectiveTransform(c, H) |
|||
x = pts[:,:,0] |
|||
xvals.append( x.max() - x.min() ) |
|||
xvals = np.array(xvals) |
|||
return softmax(xvals, 0.1) |
|||
|
|||
def centered_warp(u0, v0, a, b): |
|||
return np.dot(translation(u0, v0), |
|||
np.dot(perspective_warp(a, b), |
|||
translation(-u0, -v0))) |
|||
|
|||
def warp_containing_points(img, pts, H, border=4, shape_only=False): |
|||
|
|||
''' |
|||
display = img.copy() |
|||
for pt in pts.reshape((-1,2)).astype(int): |
|||
cv2.circle(display, tuple(pt), 4, (255, 0, 0), |
|||
-1, cv2.LINE_AA) |
|||
debug_show('warp', display) |
|||
''' |
|||
|
|||
pts2 = cv2.perspectiveTransform(pts, H) |
|||
x0, y0, w, h = cv2.boundingRect(pts2) |
|||
print('got bounding rect', x0, y0, w, h) |
|||
T = translation(-x0+border, -y0+border) |
|||
TH = np.dot(T, H) |
|||
|
|||
if shape_only: |
|||
return (h+2*border, w+2*border), TH |
|||
else: |
|||
dst = cv2.warpPerspective(img, TH, (w+2*border, h+2*border), |
|||
borderMode=cv2.BORDER_REPLICATE) |
|||
return dst, TH |
|||
|
|||
def conic_area_discrepancy(conics, x, H, opt_results=None): |
|||
|
|||
areas = [] |
|||
|
|||
for conic in conics: |
|||
cx = ellipse.conic_transform(conic, H) |
|||
k, ab = ellipse.conic_scale(cx) |
|||
if np.isinf(ab): |
|||
areas.append(1e20) |
|||
else: |
|||
areas.append(ab) |
|||
|
|||
areas = np.array(areas) |
|||
|
|||
areas /= areas.mean() # rescale so mean is 1.0 |
|||
areas -= 1 # subtract off mean |
|||
|
|||
rval = 0.5*np.dot(areas, areas) |
|||
|
|||
if opt_results is not None: |
|||
if not opt_results or rval < opt_results[-1][-1]: |
|||
opt_results.append( (x, H, rval) ) |
|||
|
|||
return rval |
|||
|
|||
def threshold(img): |
|||
|
|||
if len(img.shape) > 2: |
|||
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) |
|||
|
|||
mean = img.mean() |
|||
if mean < 100: |
|||
img = 255-img |
|||
|
|||
return cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, |
|||
cv2.THRESH_BINARY_INV, 101, 21) |
|||
|
|||
def get_contours(img): |
|||
|
|||
work = threshold(img) |
|||
|
|||
debug_show('threshold', work) |
|||
|
|||
contours, hierarchy = cv2.findContours(work, cv2.RETR_CCOMP, |
|||
cv2.CHAIN_APPROX_NONE) |
|||
|
|||
return contours, hierarchy |
|||
|
|||
def get_conics(img, contours, hierarchy, |
|||
abs_area_cutoff=0.0001, mean_area_cutoff=0.15): |
|||
|
|||
hierarchy = hierarchy.reshape((-1, 4)) |
|||
|
|||
conics = [] |
|||
used_contours = [] |
|||
areas = [] |
|||
okcontours = [] |
|||
allchildren = [] |
|||
pts = np.empty((0,1,2), dtype='float32') |
|||
centroid_accum = np.zeros(2) |
|||
total_area = 0.0 |
|||
|
|||
centroids = [] |
|||
|
|||
abs_area_cutoff *= img.shape[0] * img.shape[1] |
|||
print('abs_area_cutoff = ',abs_area_cutoff) |
|||
|
|||
for i, (c, h) in enumerate(zip(contours, hierarchy.reshape((-1, 4)))): |
|||
|
|||
next_idx, prev_idx, child_idx, parent_idx = h |
|||
|
|||
if parent_idx >= 0: |
|||
continue |
|||
|
|||
m = ellipse.moments_from_dict(cv2.moments(c)) |
|||
|
|||
if m[0] <= abs_area_cutoff: |
|||
continue |
|||
|
|||
children = [] |
|||
|
|||
while child_idx >= 0: |
|||
child_contour = contours[child_idx] |
|||
cm = cv2.moments(child_contour) |
|||
if cm['m00'] > abs_area_cutoff: |
|||
children.append(child_contour) |
|||
allchildren.append(child_contour) |
|||
child_idx = hierarchy[child_idx][0] |
|||
|
|||
if children: |
|||
work = np.zeros(img.shape[:2], dtype=np.uint8) |
|||
cv2.drawContours(work, contours, i, (1,1,1), -1) |
|||
cv2.drawContours(work, children, -1, (0,0,0), -1) |
|||
m = ellipse.moments_from_dict(cv2.moments(work, True)) |
|||
|
|||
centroids.append(m[1:3]/m[0]) |
|||
centroid_accum += m[1:3] |
|||
total_area += m[0] |
|||
pts = np.vstack((pts, c.astype('float32'))) |
|||
conic = ellipse.conic_from_moments(m) |
|||
okcontours.append(c) |
|||
conics.append(conic) |
|||
areas.append(m[0]) |
|||
|
|||
display = img.copy() |
|||
cv2.drawContours(display, okcontours+allchildren, |
|||
-1, (0, 255, 0), |
|||
6, cv2.LINE_AA) |
|||
|
|||
debug_show('contours_only', display) |
|||
|
|||
for c, a in zip(okcontours, areas): |
|||
|
|||
x, y, w, h = cv2.boundingRect(c) |
|||
|
|||
|
|||
s = str('{:,d}'.format(int(a))) |
|||
#ctr = (x + w/2 - 15*len(s), y+h/2+10) |
|||
ctr = (x, y+h+20) |
|||
|
|||
cv2.putText(display, s, ctr, |
|||
cv2.FONT_HERSHEY_SIMPLEX, 2.0, |
|||
(0, 0, 0), 12, cv2.LINE_AA) |
|||
|
|||
cv2.putText(display, s, ctr, |
|||
cv2.FONT_HERSHEY_SIMPLEX, 2.0, |
|||
(0, 255, 0), 6, cv2.LINE_AA) |
|||
|
|||
debug_show('contours', display) |
|||
|
|||
areas = np.array(areas) |
|||
amean = areas.mean() |
|||
|
|||
print('got {} contours with {} small.'.format( |
|||
len(areas), (areas < mean_area_cutoff*amean).sum())) |
|||
|
|||
idx = np.where(areas > mean_area_cutoff*amean)[0] |
|||
|
|||
conics = np.array(conics) |
|||
conics = conics[idx] |
|||
centroid_accum /= total_area |
|||
|
|||
display = img.copy() |
|||
for conic in conics: |
|||
x0, y0, a, b, theta = ellipse.gparams_from_conic(conic) |
|||
cv2.ellipse(display, (int(x0), int(y0)), (int(a), int(b)), |
|||
theta*180/np.pi, 0, 360, (0,0,255), 6, cv2.LINE_AA) |
|||
|
|||
debug_show('conics', display) |
|||
|
|||
contours = [okcontours[i].astype('float32') for i in idx] |
|||
|
|||
if 0: |
|||
|
|||
centroids = np.array([centroids[i] for i in idx]) |
|||
areas = areas[idx] |
|||
|
|||
def polyfit(x, y): |
|||
coeffs = np.polyfit(x, y, deg=1) |
|||
ypred = np.polyval(coeffs, x) |
|||
ymean = np.mean(y) |
|||
sstot = np.sum((y - ymean)**2) |
|||
ssres = np.sum((y.flatten() - ypred.flatten())**2) |
|||
r2 = 1 - ssres/sstot |
|||
return coeffs, r2 |
|||
|
|||
xfit, xr2 = polyfit(centroids[:,0], areas) |
|||
yfit, yr2 = polyfit(centroids[:,1], areas) |
|||
|
|||
xlabel = 'X coordinate (r²={:.2f})'.format(xr2) |
|||
ylabel = 'Y coordinate (r²={:.2f})'.format(yr2) |
|||
|
|||
plt.plot(centroids[:,0], areas, 'b.', zorder=1) |
|||
plt.plot(centroids[:,1], areas, 'r.', zorder=1) |
|||
plt.gca().autoscale(False) |
|||
plt.plot([0, 3000], np.polyval(xfit, [0,3000]), 'b--', |
|||
zorder=0, label=xlabel) |
|||
plt.plot([0, 3000], np.polyval(yfit, [0,3000]), 'r--', |
|||
zorder=0, label=ylabel) |
|||
plt.legend(loc='upper right') |
|||
plt.xlabel('X/Y coordinate (px)') |
|||
plt.ylabel('Contour area (px²)') |
|||
plt.savefig('position-vs-area.pdf') |
|||
|
|||
|
|||
|
|||
return conics, contours, centroid_accum |
|||
|
|||
def optimize_conics(conics, p0): |
|||
|
|||
x0 = np.array([0.0, 0.0]) |
|||
|
|||
hfunc = lambda x: centered_warp(p0[0], p0[1], x[0], x[1]) |
|||
|
|||
opt_results = [] |
|||
|
|||
f = lambda x: conic_area_discrepancy(conics, x, hfunc(x), opt_results) |
|||
|
|||
res = scipy.optimize.minimize(f, x0, method='Powell') |
|||
|
|||
H = hfunc(res.x) |
|||
|
|||
rects = [] |
|||
|
|||
if 0: |
|||
|
|||
phi = np.linspace(0, 2*np.pi, 16, endpoint=False) |
|||
width, height = 0, 0 |
|||
for x, H, fval in opt_results: |
|||
allxy = [] |
|||
for conic in conics: |
|||
Hconic = ellipse.conic_transform(conic, H) |
|||
gparams = ellipse.gparams_from_conic(Hconic) |
|||
x, y = ellipse.gparams_evaluate(gparams, phi) |
|||
xy = np.dstack((x.reshape((-1, 1, 1)), y.reshape((-1, 1, 1)))) |
|||
allxy.append(xy) |
|||
allxy = np.vstack(tuple(allxy)).astype(np.float32) |
|||
rect = cv2.boundingRect(allxy) |
|||
rects.append(rect) |
|||
x, y, w, h = rect |
|||
width = max(width, w) |
|||
height = max(height, h) |
|||
border = int(0.05 * min(width, height)) |
|||
width += border |
|||
height += border |
|||
aspect = float(width)/height |
|||
if aspect < 2.0: |
|||
width = 2*height |
|||
else: |
|||
height = width/2 |
|||
|
|||
for i, (rect, (x, H, fval)) in enumerate(zip(rects, opt_results)): |
|||
display = np.zeros((height, width), dtype=np.uint8) |
|||
x, y, w, h = rect |
|||
xoffs = width/2 - (x+w/2) |
|||
yoffs = height/2 - (y+h/2) |
|||
for conic in conics: |
|||
Hconic = ellipse.conic_transform(conic, H) |
|||
x0, y0, a, b, theta = ellipse.gparams_from_conic(Hconic) |
|||
cv2.ellipse(display, (int(x0+xoffs), int(y0+yoffs)), (int(a), int(b)), |
|||
theta*180/np.pi, 0, 360, (255,255,255), 6, cv2.LINE_AA) |
|||
cv2.putText(display, 'Area discrepancy: {:.3f}'.format(fval), |
|||
(16, height-24), cv2.FONT_HERSHEY_SIMPLEX, 2.0, |
|||
(255,255,255), 6, cv2.LINE_AA) |
|||
cv2.imwrite('frame{:04d}.png'.format(i), display) |
|||
|
|||
return H |
|||
|
|||
def orientation_detect(img, contours, H, rho=8.0, ntheta=512): |
|||
|
|||
# ignore this, just deal with edge-detected text |
|||
|
|||
pts = np.vstack(tuple(contours)) |
|||
|
|||
shape, TH = warp_containing_points(img, pts, H, shape_only=True) |
|||
|
|||
text_edges = np.zeros(shape, dtype=np.uint8) |
|||
|
|||
for contour in contours: |
|||
contour = cv2.perspectiveTransform(contour.astype(np.float32), TH) |
|||
cv2.drawContours(text_edges, [contour.astype(int)], 0, (255,255,255)) |
|||
|
|||
debug_show('edges', text_edges) |
|||
|
|||
# generate a linspace of thetas |
|||
thetas = np.linspace(-0.5*np.pi, 0.5*np.pi, ntheta, endpoint=False) |
|||
|
|||
# rho is pixels per r bin in polar (theta, r) histogram |
|||
# irho is bins per pixel |
|||
irho = 1.0/rho |
|||
|
|||
# get height and width |
|||
h, w = text_edges.shape |
|||
|
|||
# maximum bin index is given by hypotenuse of (w, h) divided by pixels per bin |
|||
bin_max = int(np.ceil(np.hypot(w, h)*irho)) |
|||
|
|||
# initialize zeroed histogram height bin_max and width num theta |
|||
hist = np.zeros((bin_max, ntheta)) |
|||
|
|||
# let u and v be x and y coordinates (respectively) of non-zero |
|||
# pixels in edge map |
|||
v, u = np.mgrid[0:h, 0:w] |
|||
v = v[text_edges.view(bool)] |
|||
u = u[text_edges.view(bool)] |
|||
|
|||
# get center coordinates |
|||
u0 = w*0.5 |
|||
v0 = h*0.5 |
|||
|
|||
# for each i and theta = thetas[i] |
|||
for i, theta in enumerate(thetas): |
|||
|
|||
# for each nonzero edge pixel, compute bin in r direction from |
|||
# pixel location and cos/sin of theta |
|||
bin_idx = ( (-(u-u0)*np.sin(theta) # x term |
|||
+ (v-v0)*np.cos(theta))*irho # y term, both |
|||
# divided by pixels |
|||
# per bin |
|||
+ 0.5*bin_max ) # offset for center pixel |
|||
|
|||
assert( bin_idx.min() >= 0 and bin_idx.max() < bin_max ) |
|||
|
|||
# 0.5 is for correct rounding here |
|||
# |
|||
# e.g. np.bincount([1, 1, 0, 3]) = [1, 2, 0, 1] |
|||
# returns count of each integer in the array |
|||
|
|||
bc = np.bincount((bin_idx + 0.5).astype(int)) |
|||
|
|||
# push this into the histogram |
|||
hist[:len(bc),i] = bc |
|||
|
|||
# number of zero pixels in each column |
|||
num_zero = (hist == 0).sum(axis=0) |
|||
|
|||
# find the maximum number of zero pixels |
|||
best_theta_idx = num_zero.argmax() |
|||
|
|||
# actual detected theta - could just return this now |
|||
theta = thetas[best_theta_idx] |
|||
|
|||
# compose with previous homography |
|||
RH = np.dot(rotation(-theta), H) |
|||
|
|||
if 1: # just debug visualization |
|||
|
|||
debug_hist = (255*hist/hist.max()).astype('uint8') |
|||
debug_hist = cv2.cvtColor(debug_hist, cv2.COLOR_GRAY2RGB) |
|||
|
|||
cv2.line(debug_hist, |
|||
(best_theta_idx, 0), |
|||
(best_theta_idx, bin_max), (255,0,0), |
|||
1, cv2.LINE_AA) |
|||
|
|||
debug_show('histogram', debug_hist) |
|||
|
|||
p0 = np.array((u0, v0)) |
|||
t = np.array((np.cos(theta), np.sin(theta))) |
|||
|
|||
warped = cv2.warpPerspective(img, TH, (shape[1], shape[0]), |
|||
borderMode=cv2.BORDER_REPLICATE) |
|||
|
|||
|
|||
debug_show('prerotate_noline', warped) |
|||
|
|||
cv2.line(warped, |
|||
tuple(map(int, p0 - rho*bin_max*t)), |
|||
tuple(map(int, p0 + rho*bin_max*t)), |
|||
(255, 0, 0), |
|||
6, cv2.LINE_AA) |
|||
|
|||
debug_show('prerotate', warped) |
|||
|
|||
warped, _ = warp_containing_points(img, pts, RH) |
|||
debug_show('preskew', warped) |
|||
|
|||
return RH |
|||
|
|||
|
|||
def skew_detect(img, contours, RH): |
|||
|
|||
hulls = [cv2.convexHull(c) for c in contours] |
|||
pts = np.vstack(tuple(hulls)) |
|||
|
|||
|
|||
|
|||
display, TRH = warp_containing_points(img, pts, RH) |
|||
|
|||
for h in hulls: |
|||
h = cv2.perspectiveTransform(h, TRH).astype(int) |
|||
cv2.drawContours(display, [h], 0, (255, 0, 255), 6, cv2.LINE_AA) |
|||
|
|||
debug_show('convex_hulls_before', display) |
|||
|
|||
f = lambda x: skewed_widths(contours, np.dot(slant(x), RH)) |
|||
|
|||
res = scipy.optimize.minimize_scalar(f, (-2.0, 0.0, 2.0)) |
|||
|
|||
SRH = np.dot(slant(res.x), RH) |
|||
warped, Hfinal = warp_containing_points(img, pts, SRH) |
|||
|
|||
display = warped.copy() |
|||
|
|||
for h in hulls: |
|||
h = cv2.perspectiveTransform(h, Hfinal).astype(int) |
|||
cv2.drawContours(display, [h], 0, (255, 0, 255), 6, cv2.LINE_AA) |
|||
|
|||
debug_show('convex_hulls_after', display) |
|||
|
|||
debug_show('final', warped) |
|||
|
|||
return SRH |
|||
|
|||
def main(): |
|||
|
|||
img = cv2.imread(sys.argv[1]) |
|||
debug_show('input', img) |
|||
|
|||
contours, hierarchy = get_contours(img) |
|||
|
|||
conics, contours, centroid = get_conics(img, contours, hierarchy) |
|||
H = optimize_conics(conics, centroid) |
|||
RH = orientation_detect(img, contours, H) |
|||
SRH = skew_detect(img, contours, RH) |
|||
|
|||
for img in DEBUG_IMAGES: |
|||
cv2.imshow('Debug', img) |
|||
while cv2.waitKey(5) < 0: |
|||
pass |
|||
|
|||
if __name__ == '__main__': |
|||
main() |
|||
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue