Repo for the search and displace ingest module that takes odf, docx and pdf and transforms it into .md to be used with search and displace operations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

175 lines
5.5 KiB

unit imjfdctflt;
{ This file contains a floating-point implementation of the
forward DCT (Discrete Cosine Transform).
This implementation should be more accurate than either of the integer
DCT implementations. However, it may not give the same results on all
machines because of differences in roundoff behavior. Speed will depend
on the hardware's floating point capacity.
A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
on each column. Direct algorithms are also available, but they are
much more complex and seem not to be any faster when reduced to code.
This implementation is based on Arai, Agui, and Nakajima's algorithm for
scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
Japanese, but the algorithm is described in the Pennebaker & Mitchell
JPEG textbook (see REFERENCES section in file README). The following code
is based directly on figure 4-8 in P&M.
While an 8-point DCT cannot be done in less than 11 multiplies, it is
possible to arrange the computation so that many of the multiplies are
simple scalings of the final outputs. These multiplies can then be
folded into the multiplications or divisions by the JPEG quantization
table entries. The AA&N method leaves only 5 multiplies and 29 adds
to be done in the DCT itself.
The primary disadvantage of this method is that with a fixed-point
implementation, accuracy is lost due to imprecise representation of the
scaled quantization values. However, that problem does not arise if
we use floating point arithmetic. }
{ Original : jfdctflt.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses
imjmorecfg,
imjinclude,
imjpeglib,
imjdct; { Private declarations for DCT subsystem }
{ Perform the forward DCT on one block of samples.}
{GLOBAL}
procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
implementation
{ This module is specialized to the case DCTSIZE = 8. }
{$ifndef DCTSIZE_IS_8}
Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
{$endif}
{ Perform the forward DCT on one block of samples.}
{GLOBAL}
procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
type
PWorkspace = ^TWorkspace;
TWorkspace = array [0..DCTSIZE2-1] of FAST_FLOAT;
var
tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : FAST_FLOAT;
tmp10, tmp11, tmp12, tmp13 : FAST_FLOAT;
z1, z2, z3, z4, z5, z11, z13 : FAST_FLOAT;
dataptr : PWorkspace;
ctr : int;
begin
{ Pass 1: process rows. }
dataptr := PWorkspace(@data);
for ctr := DCTSIZE-1 downto 0 do
begin
tmp0 := dataptr^[0] + dataptr^[7];
tmp7 := dataptr^[0] - dataptr^[7];
tmp1 := dataptr^[1] + dataptr^[6];
tmp6 := dataptr^[1] - dataptr^[6];
tmp2 := dataptr^[2] + dataptr^[5];
tmp5 := dataptr^[2] - dataptr^[5];
tmp3 := dataptr^[3] + dataptr^[4];
tmp4 := dataptr^[3] - dataptr^[4];
{ Even part }
tmp10 := tmp0 + tmp3; { phase 2 }
tmp13 := tmp0 - tmp3;
tmp11 := tmp1 + tmp2;
tmp12 := tmp1 - tmp2;
dataptr^[0] := tmp10 + tmp11; { phase 3 }
dataptr^[4] := tmp10 - tmp11;
z1 := (tmp12 + tmp13) * ({FAST_FLOAT}(0.707106781)); { c4 }
dataptr^[2] := tmp13 + z1; { phase 5 }
dataptr^[6] := tmp13 - z1;
{ Odd part }
tmp10 := tmp4 + tmp5; { phase 2 }
tmp11 := tmp5 + tmp6;
tmp12 := tmp6 + tmp7;
{ The rotator is modified from fig 4-8 to avoid extra negations. }
z5 := (tmp10 - tmp12) * ( {FAST_FLOAT}(0.382683433)); { c6 }
z2 := {FAST_FLOAT}(0.541196100) * tmp10 + z5; { c2-c6 }
z4 := {FAST_FLOAT}(1.306562965) * tmp12 + z5; { c2+c6 }
z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
z11 := tmp7 + z3; { phase 5 }
z13 := tmp7 - z3;
dataptr^[5] := z13 + z2; { phase 6 }
dataptr^[3] := z13 - z2;
dataptr^[1] := z11 + z4;
dataptr^[7] := z11 - z4;
Inc(FAST_FLOAT_PTR(dataptr), DCTSIZE); { advance pointer to next row }
end;
{ Pass 2: process columns. }
dataptr := PWorkspace(@data);
for ctr := DCTSIZE-1 downto 0 do
begin
tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
{ Even part }
tmp10 := tmp0 + tmp3; { phase 2 }
tmp13 := tmp0 - tmp3;
tmp11 := tmp1 + tmp2;
tmp12 := tmp1 - tmp2;
dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
dataptr^[DCTSIZE*4] := tmp10 - tmp11;
z1 := (tmp12 + tmp13) * {FAST_FLOAT} (0.707106781); { c4 }
dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
dataptr^[DCTSIZE*6] := tmp13 - z1;
{ Odd part }
tmp10 := tmp4 + tmp5; { phase 2 }
tmp11 := tmp5 + tmp6;
tmp12 := tmp6 + tmp7;
{ The rotator is modified from fig 4-8 to avoid extra negations. }
z5 := (tmp10 - tmp12) * {FAST_FLOAT} (0.382683433); { c6 }
z2 := {FAST_FLOAT} (0.541196100) * tmp10 + z5; { c2-c6 }
z4 := {FAST_FLOAT} (1.306562965) * tmp12 + z5; { c2+c6 }
z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
z11 := tmp7 + z3; { phase 5 }
z13 := tmp7 - z3;
dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
dataptr^[DCTSIZE*3] := z13 - z2;
dataptr^[DCTSIZE*1] := z11 + z4;
dataptr^[DCTSIZE*7] := z11 - z4;
Inc(FAST_FLOAT_PTR(dataptr)); { advance pointer to next column }
end;
end;
end.