Repo for the search and displace ingest module that takes odf, docx and pdf and transforms it into .md to be used with search and displace operations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

440 lines
16 KiB

unit imjidctint;
{$Q+}
{ This file contains a slow-but-accurate integer implementation of the
inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
must also perform dequantization of the input coefficients.
A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
on each row (or vice versa, but it's more convenient to emit a row at
a time). Direct algorithms are also available, but they are much more
complex and seem not to be any faster when reduced to code.
This implementation is based on an algorithm described in
C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
The primary algorithm described there uses 11 multiplies and 29 adds.
We use their alternate method with 12 multiplies and 32 adds.
The advantage of this method is that no data path contains more than one
multiplication; this allows a very simple and accurate implementation in
scaled fixed-point arithmetic, with a minimal number of shifts. }
{ Original : jidctint.c ; Copyright (C) 1991-1998, Thomas G. Lane. }
interface
{$I imjconfig.inc}
uses
imjmorecfg,
imjinclude,
imjpeglib,
imjdct; { Private declarations for DCT subsystem }
{ Perform dequantization and inverse DCT on one block of coefficients. }
{GLOBAL}
procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
coef_block : JCOEFPTR;
output_buf : JSAMPARRAY;
output_col : JDIMENSION);
implementation
{ This module is specialized to the case DCTSIZE = 8. }
{$ifndef DCTSIZE_IS_8}
Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
{$endif}
{ The poop on this scaling stuff is as follows:
Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
larger than the true IDCT outputs. The final outputs are therefore
a factor of N larger than desired; since N=8 this can be cured by
a simple right shift at the end of the algorithm. The advantage of
this arrangement is that we save two multiplications per 1-D IDCT,
because the y0 and y4 inputs need not be divided by sqrt(N).
We have to do addition and subtraction of the integer inputs, which
is no problem, and multiplication by fractional constants, which is
a problem to do in integer arithmetic. We multiply all the constants
by CONST_SCALE and convert them to integer constants (thus retaining
CONST_BITS bits of precision in the constants). After doing a
multiplication we have to divide the product by CONST_SCALE, with proper
rounding, to produce the correct output. This division can be done
cheaply as a right shift of CONST_BITS bits. We postpone shifting
as long as possible so that partial sums can be added together with
full fractional precision.
The outputs of the first pass are scaled up by PASS1_BITS bits so that
they are represented to better-than-integral precision. These outputs
require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
with the recommended scaling. (To scale up 12-bit sample data further, an
intermediate INT32 array would be needed.)
To avoid overflow of the 32-bit intermediate results in pass 2, we must
have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
shows that the values given below are the most effective. }
{$ifdef BITS_IN_JSAMPLE_IS_8}
const
CONST_BITS = 13;
PASS1_BITS = 2;
{$else}
const
CONST_BITS = 13;
PASS1_BITS = 1; { lose a little precision to avoid overflow }
{$endif}
const
CONST_SCALE = (INT32(1) shl CONST_BITS);
const
FIX_0_298631336 = INT32(Round(CONST_SCALE * 0.298631336)); {2446}
FIX_0_390180644 = INT32(Round(CONST_SCALE * 0.390180644)); {3196}
FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {4433}
FIX_0_765366865 = INT32(Round(CONST_SCALE * 0.765366865)); {6270}
FIX_0_899976223 = INT32(Round(CONST_SCALE * 0.899976223)); {7373}
FIX_1_175875602 = INT32(Round(CONST_SCALE * 1.175875602)); {9633}
FIX_1_501321110 = INT32(Round(CONST_SCALE * 1.501321110)); {12299}
FIX_1_847759065 = INT32(Round(CONST_SCALE * 1.847759065)); {15137}
FIX_1_961570560 = INT32(Round(CONST_SCALE * 1.961570560)); {16069}
FIX_2_053119869 = INT32(Round(CONST_SCALE * 2.053119869)); {16819}
FIX_2_562915447 = INT32(Round(CONST_SCALE * 2.562915447)); {20995}
FIX_3_072711026 = INT32(Round(CONST_SCALE * 3.072711026)); {25172}
{ Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
For 8-bit samples with the recommended scaling, all the variable
and constant values involved are no more than 16 bits wide, so a
16x16->32 bit multiply can be used instead of a full 32x32 multiply.
For 12-bit samples, a full 32-bit multiplication will be needed. }
{$ifdef BITS_IN_JSAMPLE_IS_8}
{$IFDEF BASM16}
{$IFNDEF WIN32}
{MULTIPLY16C16(var,const)}
function Multiply(X, Y: Integer): integer; assembler;
asm
mov ax, X
imul Y
mov al, ah
mov ah, dl
end;
{$ENDIF}
{$ENDIF}
function Multiply(X, Y: INT32): INT32;
begin
Multiply := INT32(X) * INT32(Y);
end;
{$else}
{#define MULTIPLY(var,const) ((var) * (const))}
function Multiply(X, Y: INT32): INT32;
begin
Multiply := INT32(X) * INT32(Y);
end;
{$endif}
{ Dequantize a coefficient by multiplying it by the multiplier-table
entry; produce an int result. In this module, both inputs and result
are 16 bits or less, so either int or short multiply will work. }
function DEQUANTIZE(coef,quantval : int) : int;
begin
Dequantize := ( ISLOW_MULT_TYPE(coef) * quantval);
end;
{ Descale and correctly round an INT32 value that's scaled by N bits.
We assume RIGHT_SHIFT rounds towards minus infinity, so adding
the fudge factor is correct for either sign of X. }
function DESCALE(x : INT32; n : int) : INT32;
var
shift_temp : INT32;
begin
{$ifdef RIGHT_SHIFT_IS_UNSIGNED}
shift_temp := x + (INT32(1) shl (n-1));
if shift_temp < 0 then
Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
else
Descale := (shift_temp shr n);
{$else}
Descale := (x + (INT32(1) shl (n-1)) shr n;
{$endif}
end;
{ Perform dequantization and inverse DCT on one block of coefficients. }
{GLOBAL}
procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
compptr : jpeg_component_info_ptr;
coef_block : JCOEFPTR;
output_buf : JSAMPARRAY;
output_col : JDIMENSION);
type
PWorkspace = ^TWorkspace;
TWorkspace = coef_bits_field; { buffers data between passes }
var
tmp0, tmp1, tmp2, tmp3 : INT32;
tmp10, tmp11, tmp12, tmp13 : INT32;
z1, z2, z3, z4, z5 : INT32;
inptr : JCOEFPTR;
quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
wsptr : PWorkspace;
outptr : JSAMPROW;
range_limit : JSAMPROW;
ctr : int;
workspace : TWorkspace;
{SHIFT_TEMPS}
var
dcval : int;
var
dcval_ : JSAMPLE;
begin
{ Each IDCT routine is responsible for range-limiting its results and
converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
be quite far out of range if the input data is corrupt, so a bulletproof
range-limiting step is required. We use a mask-and-table-lookup method
to do the combined operations quickly. See the comments with
prepare_range_limit_table (in jdmaster.c) for more info. }
range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
{ Pass 1: process columns from input, store into work array. }
{ Note results are scaled up by sqrt(8) compared to a true IDCT; }
{ furthermore, we scale the results by 2**PASS1_BITS. }
inptr := coef_block;
quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
wsptr := PWorkspace(@workspace);
for ctr := pred(DCTSIZE) downto 0 do
begin
{ Due to quantization, we will usually find that many of the input
coefficients are zero, especially the AC terms. We can exploit this
by short-circuiting the IDCT calculation for any column in which all
the AC terms are zero. In that case each output is equal to the
DC coefficient (with scale factor as needed).
With typical images and quantization tables, half or more of the
column DCT calculations can be simplified this way. }
if ((inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*2]=0) and
(inptr^[DCTSIZE*3]=0) and (inptr^[DCTSIZE*4]=0) and
(inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*6]=0) and
(inptr^[DCTSIZE*7]=0)) then
begin
{ AC terms all zero }
dcval := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]) shl PASS1_BITS;
wsptr^[DCTSIZE*0] := dcval;
wsptr^[DCTSIZE*1] := dcval;
wsptr^[DCTSIZE*2] := dcval;
wsptr^[DCTSIZE*3] := dcval;
wsptr^[DCTSIZE*4] := dcval;
wsptr^[DCTSIZE*5] := dcval;
wsptr^[DCTSIZE*6] := dcval;
wsptr^[DCTSIZE*7] := dcval;
Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
Inc(ISLOW_MULT_TYPE_PTR(quantptr));
Inc(int_ptr(wsptr));
continue;
end;
{ Even part: reverse the even part of the forward DCT. }
{ The rotator is sqrt(2)*c(-6). }
z2 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
z3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
z1 := MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 := z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 := z1 + MULTIPLY(z2, FIX_0_765366865);
z2 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
z3 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
tmp0 := (z2 + z3) shl CONST_BITS;
tmp1 := (z2 - z3) shl CONST_BITS;
tmp10 := tmp0 + tmp3;
tmp13 := tmp0 - tmp3;
tmp11 := tmp1 + tmp2;
tmp12 := tmp1 - tmp2;
{ Odd part per figure 8; the matrix is unitary and hence its
transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
tmp0 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
tmp1 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
tmp2 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
tmp3 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
z1 := tmp0 + tmp3;
z2 := tmp1 + tmp2;
z3 := tmp0 + tmp2;
z4 := tmp1 + tmp3;
z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
tmp0 := MULTIPLY(tmp0, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
tmp1 := MULTIPLY(tmp1, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
tmp2 := MULTIPLY(tmp2, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
tmp3 := MULTIPLY(tmp3, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
Inc(z3, z5);
Inc(z4, z5);
Inc(tmp0, z1 + z3);
Inc(tmp1, z2 + z4);
Inc(tmp2, z2 + z3);
Inc(tmp3, z1 + z4);
{ Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
wsptr^[DCTSIZE*0] := int (DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*7] := int (DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*1] := int (DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*6] := int (DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*2] := int (DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*5] := int (DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*3] := int (DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS));
wsptr^[DCTSIZE*4] := int (DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS));
Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
Inc(ISLOW_MULT_TYPE_PTR(quantptr));
Inc(int_ptr(wsptr));
end;
{ Pass 2: process rows from work array, store into output array. }
{ Note that we must descale the results by a factor of 8 == 2**3, }
{ and also undo the PASS1_BITS scaling. }
wsptr := @workspace;
for ctr := 0 to pred(DCTSIZE) do
begin
outptr := output_buf^[ctr];
Inc(JSAMPLE_PTR(outptr), output_col);
{ Rows of zeroes can be exploited in the same way as we did with columns.
However, the column calculation has created many nonzero AC terms, so
the simplification applies less often (typically 5% to 10% of the time).
On machines with very fast multiplication, it's possible that the
test takes more time than it's worth. In that case this section
may be commented out. }
{$ifndef NO_ZERO_ROW_TEST}
if ((wsptr^[1]=0) and (wsptr^[2]=0) and (wsptr^[3]=0) and (wsptr^[4]=0)
and (wsptr^[5]=0) and (wsptr^[6]=0) and (wsptr^[7]=0)) then
begin
{ AC terms all zero }
JSAMPLE(dcval_) := range_limit^[int(DESCALE(INT32(wsptr^[0]),
PASS1_BITS+3)) and RANGE_MASK];
outptr^[0] := dcval_;
outptr^[1] := dcval_;
outptr^[2] := dcval_;
outptr^[3] := dcval_;
outptr^[4] := dcval_;
outptr^[5] := dcval_;
outptr^[6] := dcval_;
outptr^[7] := dcval_;
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
continue;
end;
{$endif}
{ Even part: reverse the even part of the forward DCT. }
{ The rotator is sqrt(2)*c(-6). }
z2 := INT32 (wsptr^[2]);
z3 := INT32 (wsptr^[6]);
z1 := MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 := z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 := z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 := (INT32(wsptr^[0]) + INT32(wsptr^[4])) shl CONST_BITS;
tmp1 := (INT32(wsptr^[0]) - INT32(wsptr^[4])) shl CONST_BITS;
tmp10 := tmp0 + tmp3;
tmp13 := tmp0 - tmp3;
tmp11 := tmp1 + tmp2;
tmp12 := tmp1 - tmp2;
{ Odd part per figure 8; the matrix is unitary and hence its
transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
tmp0 := INT32(wsptr^[7]);
tmp1 := INT32(wsptr^[5]);
tmp2 := INT32(wsptr^[3]);
tmp3 := INT32(wsptr^[1]);
z1 := tmp0 + tmp3;
z2 := tmp1 + tmp2;
z3 := tmp0 + tmp2;
z4 := tmp1 + tmp3;
z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
tmp0 := MULTIPLY(tmp0, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
tmp1 := MULTIPLY(tmp1, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
tmp2 := MULTIPLY(tmp2, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
tmp3 := MULTIPLY(tmp3, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
Inc(z3, z5);
Inc(z4, z5);
Inc(tmp0, z1 + z3);
Inc(tmp1, z2 + z4);
Inc(tmp2, z2 + z3);
Inc(tmp3, z1 + z4);
{ Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[7] := range_limit^[ int(DESCALE(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[1] := range_limit^[ int(DESCALE(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[6] := range_limit^[ int(DESCALE(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[2] := range_limit^[ int(DESCALE(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[5] := range_limit^[ int(DESCALE(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[3] := range_limit^[ int(DESCALE(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
outptr^[4] := range_limit^[ int(DESCALE(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3))
and RANGE_MASK];
Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
end;
end;
end.