Repo for the search and displace ingest module that takes odf, docx and pdf and transforms it into .md to be used with search and displace operations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

228 lines
7.6 KiB

{
Deskew
by Marek Mauder
http://galfar.vevb.net/deskew
The contents of this file are used with permission, subject to the Mozilla
Public License Version 1.1 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/MPL-1.1.html
Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
the specific language governing rights and limitations under the License.
Alternatively, the contents of this file may be used under the terms of the
GNU Lesser General Public License (the "LGPL License"), in which case the
provisions of the LGPL License are applicable instead of those above.
If you wish to allow use of your version of this file only under the terms
of the LGPL License and not to allow others to use your version of this file
under the MPL, indicate your decision by deleting the provisions above and
replace them with the notice and other provisions required by the LGPL
License. If you do not delete the provisions above, a recipient may use
your version of this file under either the MPL or the LGPL License.
For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
}
unit RotationDetector;
interface
uses
Types,
SysUtils,
Math,
ImagingUtility;
type
TCalcSkewAngleStats = record
PixelCount: Integer;
TestedPixels: Integer;
AccumulatorSize: Integer;
AccumulatedCounts: Integer;
BestCount: Integer;
end;
PCalcSkewAngleStats = ^TCalcSkewAngleStats;
{ Calculates rotation angle for given 8bit grayscale image.
Useful for finding skew of scanned documents etc.
Uses Hough transform internally.
MaxAngle is maximal (abs. value) expected skew angle in degrees (to speed things up)
and Threshold (0..255) is used to classify pixel as black (text) or white (background).
Area of interest rectangle can be defined to restrict the detection to
work only in defined part of image (useful when the document has text only in
smaller area of page and non-text features outside the area confuse the rotation detector).
Various calculations stats can be retrieved by passing Stats parameter.}
function CalcRotationAngle(const MaxAngle: Double; Treshold: Integer;
Width, Height: Integer; Pixels: PByteArray; DetectionArea: PRect = nil;
Stats: PCalcSkewAngleStats = nil): Double;
implementation
function CalcRotationAngle(const MaxAngle: Double; Treshold: Integer;
Width, Height: Integer; Pixels: PByteArray; DetectionArea: PRect; Stats: PCalcSkewAngleStats): Double;
const
// Number of "best" lines we take into account when determining
// resulting rotation angle (lines with most votes).
BestLinesCount = 20;
// Angle step used in alpha parameter quantization
AlphaStep = 0.1;
type
TLine = record
Count: Integer;
Index: Integer;
Alpha: Double;
Distance: Double;
end;
TLineArray = array of TLine;
var
AlphaStart, MinDist, SumAngles: Double;
AlphaSteps, DistCount, AccumulatorSize, I, AccumulatedCounts: Integer;
BestLines: TLineArray;
HoughAccumulator: array of Integer;
PageWidth, PageHeight: Integer;
ContentRect: TRect;
// Classifies pixel at [X, Y] as black or white using threshold.
function IsPixelBlack(X, Y: Integer): Boolean;
begin
Result := Pixels[Y * Width + X] < Treshold;
end;
// Calculates final angle for given angle step.
function GetFinalAngle(StepIndex: Integer): Double;
begin
Result := AlphaStart + StepIndex * AlphaStep;
end;
// Calculates angle and distance parameters for all lines
// going through point [X, Y].
procedure CalcLines(X, Y: Integer);
var
D, Rads: Double;
I, DIndex, Index: Integer;
Sin, Cos: Extended;
begin
for I := 0 to AlphaSteps - 1 do
begin
// Angle for current step in radians
Rads := GetFinalAngle(I) * PI / 180;
SinCos(Rads, Sin, Cos);
// Parameter D(distance from origin) of the line y=tg(alpha)x + d
D := Y * Cos - X * Sin;
// Calc index into accumulator for current line
DIndex := Trunc(D - MinDist);
Index := DIndex * AlphaSteps + I;
// Add one vote for current line
HoughAccumulator[Index] := HoughAccumulator[Index] + 1;
end;
end;
// Uses Hough transform to calculate all lines that intersect
// interesting points (those classified as beign on base line of the text).
procedure CalcHoughTransform;
var
Y, X: Integer;
begin
for Y := 0 to PageHeight - 1 do
for X := 0 to PageWidth - 1 do
begin
if IsPixelBlack(ContentRect.Left + X, ContentRect.Top + Y) and
not IsPixelBlack(ContentRect.Left + X, ContentRect.Top + Y + 1) then
begin
CalcLines(X, Y);
end;
end;
end;
// Chooses "best" lines (with the most votes) from the accumulator
function GetBestLines(Count: Integer): TLineArray;
var
I, J, DistIndex, AlphaIndex: Integer;
Temp: TLine;
begin
SetLength(Result, Count);
for I := 0 to AccumulatorSize - 1 do
begin
if HoughAccumulator[I] > Result[Count - 1].Count then
begin
// Current line has more votes than the last selected one,
// let's put it the pot
Result[Count - 1].Count := HoughAccumulator[I];
Result[Count - 1].Index := I;
J := Count - 1;
// Sort the lines based on number of votes
while (J > 0) and (Result[J].Count > Result[J - 1].Count) do
begin
Temp := Result[J];
Result[J] := Result[J - 1];
Result[J - 1] := Temp;
J := J - 1;
end;
end;
AccumulatedCounts := AccumulatedCounts + HoughAccumulator[I];
end;
for I := 0 to Count - 1 do
begin
// Caculate line angle and distance according to index in the accumulator
DistIndex := Result[I].Index div AlphaSteps;
AlphaIndex := Result[I].Index - DistIndex * AlphaSteps;
Result[I].Alpha := GetFinalAngle(AlphaIndex);
Result[I].Distance := DistIndex + MinDist;
end;
end;
begin
AccumulatedCounts := 0;
// Use supplied page content rect or just the whole image
ContentRect := Rect(0, 0, Width, Height);
if DetectionArea <> nil then
begin
Assert((RectWidth(DetectionArea^) <= Width) and (RectHeight(DetectionArea^) <= Height));
ContentRect := DetectionArea^;
end;
PageWidth := ContentRect.Right - ContentRect.Left;
PageHeight := ContentRect.Bottom - ContentRect.Top;
if (ContentRect.Bottom = Height) then
Dec(PageHeight); // Don't check for black pixels outsize of image in CalcHoughTransform()
AlphaStart := -MaxAngle;
AlphaSteps := Ceil(2 * MaxAngle / AlphaStep); // Number of angle steps = samples from interval <-MaxAngle, MaxAngle>
MinDist := -Max(PageWidth, PageHeight);
DistCount := 2 * (PageWidth + PageHeight);
// Determine the size of line accumulator
AccumulatorSize := DistCount * AlphaSteps;
SetLength(HoughAccumulator, AccumulatorSize);
// Calculate Hough transform
CalcHoughTransform;
// Get the best lines with most votes
BestLines := GetBestLines(BestLinesCount);
// Average angles of the selected lines to get the rotation angle of the image
SumAngles := 0;
for I := 0 to BestLinesCount - 1 do
SumAngles := SumAngles + BestLines[I].Alpha;
Result := SumAngles / BestLinesCount;
if Stats <> nil then
begin
Stats.BestCount := BestLines[0].Count;
Stats.PixelCount := PageWidth * PageHeight;
Stats.AccumulatorSize := AccumulatorSize;
Stats.AccumulatedCounts := AccumulatedCounts;
Stats.TestedPixels := AccumulatedCounts div AlphaSteps;
end;
end;
end.