|
|
#!/usr/bin/env python ###################################################################### # page_dewarp.py - Proof-of-concept of page-dewarping based on a # "cubic sheet" model. Requires OpenCV (version 3 or greater), # PIL/Pillow, and scipy.optimize. ###################################################################### # Author: Matt Zucker # Date: July 2016 # License: MIT License (see LICENSE.txt) ######################################################################
from __future__ import division from __future__ import print_function from builtins import zip from builtins import str from builtins import range from builtins import object from past.utils import old_div import os import sys import datetime import cv2 from PIL import Image import numpy as np import scipy.optimize
# for some reason pylint complains about cv2 members being undefined :( # pylint: disable=E1101
PAGE_MARGIN_X = 50 # reduced px to ignore near L/R edge PAGE_MARGIN_Y = 20 # reduced px to ignore near T/B edge
OUTPUT_ZOOM = 1.0 # how much to zoom output relative to *original* image OUTPUT_DPI = 300 # just affects stated DPI of PNG, not appearance REMAP_DECIMATE = 16 # downscaling factor for remapping image
ADAPTIVE_WINSZ = 55 # window size for adaptive threshold in reduced px
TEXT_MIN_WIDTH = 15 # min reduced px width of detected text contour TEXT_MIN_HEIGHT = 2 # min reduced px height of detected text contour TEXT_MIN_ASPECT = 1.5 # filter out text contours below this w/h ratio TEXT_MAX_THICKNESS = 10 # max reduced px thickness of detected text contour
EDGE_MAX_OVERLAP = 1.0 # max reduced px horiz. overlap of contours in span EDGE_MAX_LENGTH = 100.0 # max reduced px length of edge connecting contours EDGE_ANGLE_COST = 10.0 # cost of angles in edges (tradeoff vs. length) EDGE_MAX_ANGLE = 7.5 # maximum change in angle allowed between contours
RVEC_IDX = slice(0, 3) # index of rvec in params vector TVEC_IDX = slice(3, 6) # index of tvec in params vector CUBIC_IDX = slice(6, 8) # index of cubic slopes in params vector
SPAN_MIN_WIDTH = 30 # minimum reduced px width for span SPAN_PX_PER_STEP = 20 # reduced px spacing for sampling along spans FOCAL_LENGTH = 1.2 # normalized focal length of camera
DEBUG_LEVEL = 0 # 0=none, 1=some, 2=lots, 3=all DEBUG_OUTPUT = 'file' # file, screen, both
WINDOW_NAME = 'Dewarp' # Window name for visualization
# nice color palette for visualizing contours, etc. CCOLORS = [ (255, 0, 0), (255, 63, 0), (255, 127, 0), (255, 191, 0), (255, 255, 0), (191, 255, 0), (127, 255, 0), (63, 255, 0), (0, 255, 0), (0, 255, 63), (0, 255, 127), (0, 255, 191), (0, 255, 255), (0, 191, 255), (0, 127, 255), (0, 63, 255), (0, 0, 255), (63, 0, 255), (127, 0, 255), (191, 0, 255), (255, 0, 255), (255, 0, 191), (255, 0, 127), (255, 0, 63), ]
# default intrinsic parameter matrix K = np.array([ [FOCAL_LENGTH, 0, 0], [0, FOCAL_LENGTH, 0], [0, 0, 1]], dtype=np.float32)
def debug_show(name, step, text, display):
if DEBUG_OUTPUT != 'screen': filetext = text.replace(' ', '_') outfile = name + '_debug_' + str(step) + '_' + filetext + '.png' cv2.imwrite(outfile, display)
if DEBUG_OUTPUT != 'file':
image = display.copy() height = image.shape[0]
cv2.putText(image, text, (16, height-16), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 3, cv2.LINE_AA)
cv2.putText(image, text, (16, height-16), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 1, cv2.LINE_AA)
cv2.imshow(WINDOW_NAME, image)
while cv2.waitKey(5) < 0: pass
def round_nearest_multiple(i, factor): i = int(i) rem = i % factor if not rem: return i else: return i + factor - rem
def pix2norm(shape, pts): height, width = shape[:2] scl = 2.0/(max(height, width)) offset = np.array([width, height], dtype=pts.dtype).reshape((-1, 1, 2))*0.5 return (pts - offset) * scl
def norm2pix(shape, pts, as_integer): height, width = shape[:2] scl = max(height, width)*0.5 offset = np.array([0.5*width, 0.5*height], dtype=pts.dtype).reshape((-1, 1, 2)) rval = pts * scl + offset if as_integer: return (rval + 0.5).astype(int) else: return rval
def fltp(point): return tuple(point.astype(int).flatten())
def draw_correspondences(img, dstpoints, projpts):
display = img.copy() dstpoints = norm2pix(img.shape, dstpoints, True) projpts = norm2pix(img.shape, projpts, True)
for pts, color in [(projpts, (255, 0, 0)), (dstpoints, (0, 0, 255))]:
for point in pts: cv2.circle(display, fltp(point), 3, color, -1, cv2.LINE_AA)
for point_a, point_b in zip(projpts, dstpoints): cv2.line(display, fltp(point_a), fltp(point_b), (255, 255, 255), 1, cv2.LINE_AA)
return display
def get_default_params(corners, ycoords, xcoords):
# page width and height page_width = np.linalg.norm(corners[1] - corners[0]) page_height = np.linalg.norm(corners[-1] - corners[0]) rough_dims = (page_width, page_height)
# our initial guess for the cubic has no slope cubic_slopes = [0.0, 0.0]
# object points of flat page in 3D coordinates corners_object3d = np.array([ [0, 0, 0], [page_width, 0, 0], [page_width, page_height, 0], [0, page_height, 0]])
# estimate rotation and translation from four 2D-to-3D point # correspondences _, rvec, tvec = cv2.solvePnP(corners_object3d, corners, K, np.zeros(5))
span_counts = [len(xc) for xc in xcoords]
params = np.hstack((np.array(rvec).flatten(), np.array(tvec).flatten(), np.array(cubic_slopes).flatten(), ycoords.flatten()) + tuple(xcoords))
return rough_dims, span_counts, params
def project_xy(xy_coords, pvec):
# get cubic polynomial coefficients given # # f(0) = 0, f'(0) = alpha # f(1) = 0, f'(1) = beta
alpha, beta = tuple(pvec[CUBIC_IDX])
poly = np.array([ alpha + beta, -2*alpha - beta, alpha, 0])
xy_coords = xy_coords.reshape((-1, 2)) z_coords = np.polyval(poly, xy_coords[:, 0])
objpoints = np.hstack((xy_coords, z_coords.reshape((-1, 1))))
image_points, _ = cv2.projectPoints(objpoints, pvec[RVEC_IDX], pvec[TVEC_IDX], K, np.zeros(5))
return image_points
def project_keypoints(pvec, keypoint_index):
xy_coords = pvec[keypoint_index] xy_coords[0, :] = 0
return project_xy(xy_coords, pvec)
def resize_to_screen(src, maxw=1280, maxh=700, copy=False):
height, width = src.shape[:2]
scl_x = float(width)/maxw scl_y = float(height)/maxh
scl = int(np.ceil(max(scl_x, scl_y)))
if scl > 1.0: inv_scl = 1.0/scl img = cv2.resize(src, (0, 0), None, inv_scl, inv_scl, cv2.INTER_AREA) elif copy: img = src.copy() else: img = src
return img
def box(width, height): return np.ones((height, width), dtype=np.uint8)
def get_page_extents(small):
height, width = small.shape[:2]
xmin = PAGE_MARGIN_X ymin = PAGE_MARGIN_Y xmax = width-PAGE_MARGIN_X ymax = height-PAGE_MARGIN_Y
page = np.zeros((height, width), dtype=np.uint8) cv2.rectangle(page, (xmin, ymin), (xmax, ymax), (255, 255, 255), -1)
outline = np.array([ [xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]])
return page, outline
def get_mask(name, small, pagemask, masktype):
sgray = cv2.cvtColor(small, cv2.COLOR_RGB2GRAY)
if masktype == 'text':
mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_WINSZ, 25)
if DEBUG_LEVEL >= 3: debug_show(name, 0.1, 'thresholded', mask)
mask = cv2.dilate(mask, box(9, 1))
if DEBUG_LEVEL >= 3: debug_show(name, 0.2, 'dilated', mask)
mask = cv2.erode(mask, box(1, 3))
if DEBUG_LEVEL >= 3: debug_show(name, 0.3, 'eroded', mask)
else:
mask = cv2.adaptiveThreshold(sgray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_WINSZ, 7)
if DEBUG_LEVEL >= 3: debug_show(name, 0.4, 'thresholded', mask)
mask = cv2.erode(mask, box(3, 1), iterations=3)
if DEBUG_LEVEL >= 3: debug_show(name, 0.5, 'eroded', mask)
mask = cv2.dilate(mask, box(8, 2))
if DEBUG_LEVEL >= 3: debug_show(name, 0.6, 'dilated', mask)
return np.minimum(mask, pagemask)
def interval_measure_overlap(int_a, int_b): return min(int_a[1], int_b[1]) - max(int_a[0], int_b[0])
def angle_dist(angle_b, angle_a):
diff = angle_b - angle_a
while diff > np.pi: diff -= 2*np.pi
while diff < -np.pi: diff += 2*np.pi
return np.abs(diff)
def blob_mean_and_tangent(contour):
moments = cv2.moments(contour)
area = moments['m00']
mean_x = old_div(moments['m10'], area) mean_y = old_div(moments['m01'], area)
moments_matrix = old_div(np.array([ [moments['mu20'], moments['mu11']], [moments['mu11'], moments['mu02']] ]), area)
_, svd_u, _ = cv2.SVDecomp(moments_matrix)
center = np.array([mean_x, mean_y]) tangent = svd_u[:, 0].flatten().copy()
return center, tangent
class ContourInfo(object):
def __init__(self, contour, rect, mask):
self.contour = contour self.rect = rect self.mask = mask
self.center, self.tangent = blob_mean_and_tangent(contour)
self.angle = np.arctan2(self.tangent[1], self.tangent[0])
clx = [self.proj_x(point) for point in contour]
lxmin = min(clx) lxmax = max(clx)
self.local_xrng = (lxmin, lxmax)
self.point0 = self.center + self.tangent * lxmin self.point1 = self.center + self.tangent * lxmax
self.pred = None self.succ = None
def proj_x(self, point): return np.dot(self.tangent, point.flatten()-self.center)
def local_overlap(self, other): xmin = self.proj_x(other.point0) xmax = self.proj_x(other.point1) return interval_measure_overlap(self.local_xrng, (xmin, xmax))
def generate_candidate_edge(cinfo_a, cinfo_b):
# we want a left of b (so a's successor will be b and b's # predecessor will be a) make sure right endpoint of b is to the # right of left endpoint of a. if cinfo_a.point0[0] > cinfo_b.point1[0]: tmp = cinfo_a cinfo_a = cinfo_b cinfo_b = tmp
x_overlap_a = cinfo_a.local_overlap(cinfo_b) x_overlap_b = cinfo_b.local_overlap(cinfo_a)
overall_tangent = cinfo_b.center - cinfo_a.center overall_angle = np.arctan2(overall_tangent[1], overall_tangent[0])
delta_angle = old_div(max(angle_dist(cinfo_a.angle, overall_angle), angle_dist(cinfo_b.angle, overall_angle)) * 180,np.pi)
# we want the largest overlap in x to be small x_overlap = max(x_overlap_a, x_overlap_b)
dist = np.linalg.norm(cinfo_b.point0 - cinfo_a.point1)
if (dist > EDGE_MAX_LENGTH or x_overlap > EDGE_MAX_OVERLAP or delta_angle > EDGE_MAX_ANGLE): return None else: score = dist + delta_angle*EDGE_ANGLE_COST return (score, cinfo_a, cinfo_b)
def make_tight_mask(contour, xmin, ymin, width, height):
tight_mask = np.zeros((height, width), dtype=np.uint8) tight_contour = contour - np.array((xmin, ymin)).reshape((-1, 1, 2))
cv2.drawContours(tight_mask, [tight_contour], 0, (1, 1, 1), -1)
return tight_mask
def get_contours(name, small, pagemask, masktype):
mask = get_mask(name, small, pagemask, masktype)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours_out = []
for contour in contours:
rect = cv2.boundingRect(contour) xmin, ymin, width, height = rect
if (width < TEXT_MIN_WIDTH or height < TEXT_MIN_HEIGHT or width < TEXT_MIN_ASPECT*height): continue
tight_mask = make_tight_mask(contour, xmin, ymin, width, height)
if tight_mask.sum(axis=0).max() > TEXT_MAX_THICKNESS: continue
contours_out.append(ContourInfo(contour, rect, tight_mask))
if DEBUG_LEVEL >= 2: visualize_contours(name, small, contours_out)
return contours_out
def assemble_spans(name, small, pagemask, cinfo_list):
# sort list cinfo_list = sorted(cinfo_list, key=lambda cinfo: cinfo.rect[1])
# generate all candidate edges candidate_edges = []
for i, cinfo_i in enumerate(cinfo_list): for j in range(i): # note e is of the form (score, left_cinfo, right_cinfo) edge = generate_candidate_edge(cinfo_i, cinfo_list[j]) if edge is not None: candidate_edges.append(edge)
# sort candidate edges by score (lower is better) candidate_edges.sort()
# for each candidate edge for _, cinfo_a, cinfo_b in candidate_edges: # if left and right are unassigned, join them if cinfo_a.succ is None and cinfo_b.pred is None: cinfo_a.succ = cinfo_b cinfo_b.pred = cinfo_a
# generate list of spans as output spans = []
# until we have removed everything from the list while cinfo_list:
# get the first on the list cinfo = cinfo_list[0]
# keep following predecessors until none exists while cinfo.pred: cinfo = cinfo.pred
# start a new span cur_span = []
width = 0.0
# follow successors til end of span while cinfo: # remove from list (sadly making this loop *also* O(n^2) cinfo_list.remove(cinfo) # add to span cur_span.append(cinfo) width += cinfo.local_xrng[1] - cinfo.local_xrng[0] # set successor cinfo = cinfo.succ
# add if long enough if width > SPAN_MIN_WIDTH: spans.append(cur_span)
if DEBUG_LEVEL >= 2: visualize_spans(name, small, pagemask, spans)
return spans
def sample_spans(shape, spans):
span_points = []
for span in spans:
contour_points = []
for cinfo in span:
yvals = np.arange(cinfo.mask.shape[0]).reshape((-1, 1)) totals = (yvals * cinfo.mask).sum(axis=0) means = old_div(totals, cinfo.mask.sum(axis=0))
xmin, ymin = cinfo.rect[:2]
step = SPAN_PX_PER_STEP start = old_div(((len(means)-1) % step), 2)
contour_points += [(x+xmin, means[x]+ymin) for x in range(start, len(means), step)]
contour_points = np.array(contour_points, dtype=np.float32).reshape((-1, 1, 2))
contour_points = pix2norm(shape, contour_points)
span_points.append(contour_points)
return span_points
def keypoints_from_samples(name, small, pagemask, page_outline, span_points):
all_evecs = np.array([[0.0, 0.0]]) all_weights = 0
for points in span_points:
_, evec = cv2.PCACompute(points.reshape((-1, 2)), None, maxComponents=1)
weight = np.linalg.norm(points[-1] - points[0])
all_evecs += evec * weight all_weights += weight
evec = old_div(all_evecs, all_weights)
x_dir = evec.flatten()
if x_dir[0] < 0: x_dir = -x_dir
y_dir = np.array([-x_dir[1], x_dir[0]])
pagecoords = cv2.convexHull(page_outline) pagecoords = pix2norm(pagemask.shape, pagecoords.reshape((-1, 1, 2))) pagecoords = pagecoords.reshape((-1, 2))
px_coords = np.dot(pagecoords, x_dir) py_coords = np.dot(pagecoords, y_dir)
px0 = px_coords.min() px1 = px_coords.max()
py0 = py_coords.min() py1 = py_coords.max()
p00 = px0 * x_dir + py0 * y_dir p10 = px1 * x_dir + py0 * y_dir p11 = px1 * x_dir + py1 * y_dir p01 = px0 * x_dir + py1 * y_dir
corners = np.vstack((p00, p10, p11, p01)).reshape((-1, 1, 2))
ycoords = [] xcoords = []
for points in span_points: pts = points.reshape((-1, 2)) px_coords = np.dot(pts, x_dir) py_coords = np.dot(pts, y_dir) ycoords.append(py_coords.mean() - py0) xcoords.append(px_coords - px0)
if DEBUG_LEVEL >= 2: visualize_span_points(name, small, span_points, corners)
return corners, np.array(ycoords), xcoords
def visualize_contours(name, small, cinfo_list):
regions = np.zeros_like(small)
for j, cinfo in enumerate(cinfo_list):
cv2.drawContours(regions, [cinfo.contour], 0, CCOLORS[j % len(CCOLORS)], -1)
mask = (regions.max(axis=2) != 0)
display = small.copy() display[mask] = (old_div(display[mask],2)) + (old_div(regions[mask],2))
for j, cinfo in enumerate(cinfo_list): color = CCOLORS[j % len(CCOLORS)] color = tuple([old_div(c,4) for c in color])
cv2.circle(display, fltp(cinfo.center), 3, (255, 255, 255), 1, cv2.LINE_AA)
cv2.line(display, fltp(cinfo.point0), fltp(cinfo.point1), (255, 255, 255), 1, cv2.LINE_AA)
debug_show(name, 1, 'contours', display)
def visualize_spans(name, small, pagemask, spans):
regions = np.zeros_like(small)
for i, span in enumerate(spans): contours = [cinfo.contour for cinfo in span] cv2.drawContours(regions, contours, -1, CCOLORS[i*3 % len(CCOLORS)], -1)
mask = (regions.max(axis=2) != 0)
display = small.copy() display[mask] = (old_div(display[mask],2)) + (old_div(regions[mask],2)) display[pagemask == 0] //= 4
debug_show(name, 2, 'spans', display)
def visualize_span_points(name, small, span_points, corners):
display = small.copy()
for i, points in enumerate(span_points):
points = norm2pix(small.shape, points, False)
mean, small_evec = cv2.PCACompute(points.reshape((-1, 2)), None, maxComponents=1)
dps = np.dot(points.reshape((-1, 2)), small_evec.reshape((2, 1))) dpm = np.dot(mean.flatten(), small_evec.flatten())
point0 = mean + small_evec * (dps.min()-dpm) point1 = mean + small_evec * (dps.max()-dpm)
for point in points: cv2.circle(display, fltp(point), 3, CCOLORS[i % len(CCOLORS)], -1, cv2.LINE_AA)
cv2.line(display, fltp(point0), fltp(point1), (255, 255, 255), 1, cv2.LINE_AA)
cv2.polylines(display, [norm2pix(small.shape, corners, True)], True, (255, 255, 255))
debug_show(name, 3, 'span points', display)
def imgsize(img): height, width = img.shape[:2] return '{}x{}'.format(width, height)
def make_keypoint_index(span_counts):
nspans = len(span_counts) npts = sum(span_counts) keypoint_index = np.zeros((npts+1, 2), dtype=int) start = 1
for i, count in enumerate(span_counts): end = start + count keypoint_index[start:start+end, 1] = 8+i start = end
keypoint_index[1:, 0] = np.arange(npts) + 8 + nspans
return keypoint_index
def optimize_params(name, small, dstpoints, span_counts, params):
keypoint_index = make_keypoint_index(span_counts)
def objective(pvec): ppts = project_keypoints(pvec, keypoint_index) return np.sum((dstpoints - ppts)**2)
print(' initial objective is', objective(params))
if DEBUG_LEVEL >= 1: projpts = project_keypoints(params, keypoint_index) display = draw_correspondences(small, dstpoints, projpts) debug_show(name, 4, 'keypoints before', display)
print(' optimizing', len(params), 'parameters...') start = datetime.datetime.now() res = scipy.optimize.minimize(objective, params, method='Powell') end = datetime.datetime.now() print(' optimization took', round((end-start).total_seconds(), 2), 'sec.') print(' final objective is', res.fun) params = res.x
if DEBUG_LEVEL >= 1: projpts = project_keypoints(params, keypoint_index) display = draw_correspondences(small, dstpoints, projpts) debug_show(name, 5, 'keypoints after', display)
return params
def get_page_dims(corners, rough_dims, params):
dst_br = corners[2].flatten()
dims = np.array(rough_dims)
def objective(dims): proj_br = project_xy(dims, params) return np.sum((dst_br - proj_br.flatten())**2)
res = scipy.optimize.minimize(objective, dims, method='Powell') dims = res.x
print(' got page dims', dims[0], 'x', dims[1])
return dims
def remap_image(name, dirname, img, small, page_dims, params):
height = 0.5 * page_dims[1] * OUTPUT_ZOOM * img.shape[0] height = round_nearest_multiple(height, REMAP_DECIMATE)
width = round_nearest_multiple(old_div(height * page_dims[0], page_dims[1]), REMAP_DECIMATE)
print(' output will be {}x{}'.format(width, height))
height_small = old_div(height, REMAP_DECIMATE) width_small = old_div(width, REMAP_DECIMATE)
page_x_range = np.linspace(0, page_dims[0], width_small) page_y_range = np.linspace(0, page_dims[1], height_small)
page_x_coords, page_y_coords = np.meshgrid(page_x_range, page_y_range)
page_xy_coords = np.hstack((page_x_coords.flatten().reshape((-1, 1)), page_y_coords.flatten().reshape((-1, 1))))
page_xy_coords = page_xy_coords.astype(np.float32)
image_points = project_xy(page_xy_coords, params) image_points = norm2pix(img.shape, image_points, False)
image_x_coords = image_points[:, 0, 0].reshape(page_x_coords.shape) image_y_coords = image_points[:, 0, 1].reshape(page_y_coords.shape)
image_x_coords = cv2.resize(image_x_coords, (width, height), interpolation=cv2.INTER_CUBIC)
image_y_coords = cv2.resize(image_y_coords, (width, height), interpolation=cv2.INTER_CUBIC)
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
remapped = cv2.remap(img_gray, image_x_coords, image_y_coords, cv2.INTER_CUBIC, None, cv2.BORDER_REPLICATE)
thresh = cv2.adaptiveThreshold(remapped, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, ADAPTIVE_WINSZ, 25)
pil_image = Image.fromarray(thresh) pil_image = pil_image.convert('1')
threshfile = name + '_thresh.png' pil_image.save(dirname + '/' + threshfile, dpi=(OUTPUT_DPI, OUTPUT_DPI))
if DEBUG_LEVEL >= 1: height = small.shape[0] width = int(round(height * float(thresh.shape[1])/thresh.shape[0])) display = cv2.resize(thresh, (width, height), interpolation=cv2.INTER_AREA) debug_show(name, 6, 'output', display)
return threshfile
def main():
if len(sys.argv) < 2: print('usage:', sys.argv[0], 'IMAGE1 [IMAGE2 ...]') sys.exit(0)
if DEBUG_LEVEL > 0 and DEBUG_OUTPUT != 'file': cv2.namedWindow(WINDOW_NAME)
outfiles = []
for imgfile in sys.argv[1:]:
img = cv2.imread(imgfile) small = resize_to_screen(img) basename = os.path.basename(imgfile) dirname = os.path.dirname(imgfile) name, _ = os.path.splitext(basename)
print('loaded', basename, 'with size', imgsize(img), end=' ') print('and resized to', imgsize(small))
if DEBUG_LEVEL >= 3: debug_show(name, 0.0, 'original', small)
pagemask, page_outline = get_page_extents(small)
cinfo_list = get_contours(name, small, pagemask, 'text') spans = assemble_spans(name, small, pagemask, cinfo_list)
if len(spans) < 3: print(' detecting lines because only', len(spans), 'text spans') cinfo_list = get_contours(name, small, pagemask, 'line') spans2 = assemble_spans(name, small, pagemask, cinfo_list) if len(spans2) > len(spans): spans = spans2
if len(spans) < 1: print('skipping', name, 'because only', len(spans), 'spans') continue
span_points = sample_spans(small.shape, spans)
print(' got', len(spans), 'spans', end=' ') print('with', sum([len(pts) for pts in span_points]), 'points.')
corners, ycoords, xcoords = keypoints_from_samples(name, small, pagemask, page_outline, span_points)
rough_dims, span_counts, params = get_default_params(corners, ycoords, xcoords)
dstpoints = np.vstack((corners[0].reshape((1, 1, 2)),) + tuple(span_points))
params = optimize_params(name, small, dstpoints, span_counts, params)
page_dims = get_page_dims(corners, rough_dims, params)
outfile = remap_image(name, dirname, img, small, page_dims, params)
outfiles.append(outfile)
print(' wrote', outfile) print()
print('to convert to PDF (requires ImageMagick):') print(' convert -compress Group4 ' + ' '.join(outfiles) + ' output.pdf')
if __name__ == '__main__': main()
|