Repo for the search and displace ingest module that takes odf, docx and pdf and transforms it into .md to be used with search and displace operations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

697 lines
21 KiB

{
Deskew
by Marek Mauder
http://galfar.vevb.net/deskew
The contents of this file are used with permission, subject to the Mozilla
Public License Version 1.1 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/MPL-1.1.html
Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
the specific language governing rights and limitations under the License.
Alternatively, the contents of this file may be used under the terms of the
GNU Lesser General Public License (the "LGPL License"), in which case the
provisions of the LGPL License are applicable instead of those above.
If you wish to allow use of your version of this file only under the terms
of the LGPL License and not to allow others to use your version of this file
under the MPL, indicate your decision by deleting the provisions above and
replace them with the notice and other provisions required by the LGPL
License. If you do not delete the provisions above, a recipient may use
your version of this file under either the MPL or the LGPL License.
For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
}
{
Unit with various image processing functions. Some are taken from
Imaging extensions.
}
unit ImageUtils;
{$I ImagingOptions.inc}
interface
uses
Types,
Math,
SysUtils,
Classes,
ImagingTypes,
Imaging,
ImagingFormats,
ImagingUtility;
type
TResamplingFilter = (
rfNearest,
rfLinear,
rfCubic,
rfLanczos
);
{ Thresholding using Otsu's method (which chooses the threshold
to minimize the intraclass variance of the black and white pixels!).
Functions returns calculated threshold level value [0..255].
If BinarizeImage is True then the Image is automatically converted to binary using
computed threshold level.}
function OtsuThresholding(var Image: TImageData; BinarizeImage: Boolean = False): Integer;
const
SupportedRotationFormats: set of TImageFormat = [ifGray8, ifR8G8B8, ifA8R8G8B8];
{ Rotates image with a background (of outside "void" areas) of specified color. The image is resized to fit
the whole rotated image. }
procedure RotateImage(var Image: TImageData; Angle: Double; BackgroundColor: TColor32;
ResamplingFilter: TResamplingFilter; FitRotated: Boolean);
implementation
function OtsuThresholding(var Image: TImageData; BinarizeImage: Boolean): Integer;
var
Histogram: array[Byte] of Single;
Level, Max, Min, I, J, NumPixels: Integer;
Pix: PByte;
Mean, Variance: Single;
Mu, Omega, LevelMean, LargestMu: Single;
begin
Assert(Image.Format = ifGray8);
FillChar(Histogram, SizeOf(Histogram), 0);
Min := 255;
Max := 0;
Level := 0;
NumPixels := Image.Width * Image.Height;
Pix := Image.Bits;
// Compute histogram and determine min and max pixel values
for I := 0 to NumPixels - 1 do
begin
Histogram[Pix^] := Histogram[Pix^] + 1.0;
if Pix^ < Min then
Min := Pix^;
if Pix^ > Max then
Max := Pix^;
Inc(Pix);
end;
// Normalize histogram
for I := 0 to 255 do
Histogram[I] := Histogram[I] / NumPixels;
// Compute image mean and variance
Mean := 0.0;
Variance := 0.0;
for I := 0 to 255 do
Mean := Mean + (I + 1) * Histogram[I];
for I := 0 to 255 do
Variance := Variance + Sqr(I + 1 - Mean) * Histogram[I];
// Now finally compute threshold level
LargestMu := 0;
for I := 0 to 255 do
begin
Omega := 0.0;
LevelMean := 0.0;
for J := 0 to I - 1 do
begin
Omega := Omega + Histogram[J];
LevelMean := LevelMean + (J + 1) * Histogram[J];
end;
Mu := Sqr(Mean * Omega - LevelMean);
Omega := Omega * (1.0 - Omega);
if Omega > 0.0 then
Mu := Mu / Omega
else
Mu := 0;
if Mu > LargestMu then
begin
LargestMu := Mu;
Level := I;
end;
end;
if BinarizeImage then
begin
// Do thresholding using computed level
Pix := Image.Bits;
for I := 0 to Image.Width * Image.Height - 1 do
begin
if Pix^ >= Level then
Pix^ := 255
else
Pix^ := 0;
Inc(Pix);
end;
end;
Result := Level;
end;
procedure RotateImage(var Image: TImageData; Angle: Double; BackgroundColor: TColor32;
ResamplingFilter: TResamplingFilter; FitRotated: Boolean);
// Use precomputed weights for bicubic and Lanczos filters
{$DEFINE USE_FILTER_TABLE}
type
TBufferEntry = record
B, G, R, A: Single;
end;
const
EmptyBufferEntry: TBufferEntry = (B: 0; G: 0; R: 0; A: 0);
TableSize = 32;
MaxTablePos = TableSize - 1;
MaxKernelRadius = 3;
var
SrcWidth, SrcHeight: Integer;
SrcWidthHalf, SrcHeightHalf, DstWidthHalf, DstHeightHalf: Single;
DstWidth, DstHeight: Integer;
AngleRad, ForwardSin, ForwardCos, BackwardSin, BackwardCos, SrcX, SrcY, D: Single;
TopLeft, TopRight, BottomLeft, BottomRight: TFloatPoint;
SrcImage, DstImage: TImageData;
FormatInfo: TImageFormatInfo;
X, Y, Bpp: Integer;
DstPixel24: PColor24Rec;
BackColor24: TColor24Rec;
BackColor32, Pixel32: TColor32Rec;
DstByte: PByte;
Filter: TSamplingFilter;
FilterFunction: TFilterFunction;
FilterRadius: Single;
KernelWidth: Integer;
WeightTable: array[-MaxKernelRadius..MaxKernelRadius, 0..TableSize] of Single;
function FastFloor(X: Single): Integer; inline;
begin
Result := Trunc(X + 65536.0) - 65536;
end;
function FastCeil(X: Single): Integer; inline;
begin
Result := 65536 - Trunc(65536.0 - X);
end;
function GetPixelColor24(X, Y: Integer): TColor24Rec; {$IFDEF FPC}inline;{$ENDIF}
begin
if (X >= 0) and (X < SrcWidth) and (Y >= 0) and (Y < SrcHeight) then
Result := PColor24RecArray(SrcImage.Bits)[Y * SrcWidth + X]
else
Result := BackColor24;
end;
function GetPixelColor8(X, Y: Integer): Byte; {$IFDEF FPC}inline;{$ENDIF}
begin
if (X >= 0) and (X < SrcWidth) and (Y >= 0) and (Y < SrcHeight) then
Result := PByteArray(SrcImage.Bits)[Y * SrcWidth + X]
else
Result := BackColor32.B;
end;
function GetPixelColor32(X, Y: Integer): TColor32Rec; {$IFDEF FPC}inline;{$ENDIF}
begin
if (X >= 0) and (X < SrcWidth) and (Y >= 0) and (Y < SrcHeight) then
Result := PColor32RecArray(SrcImage.Bits)[Y * SrcWidth + X]
else
Result := BackColor32;
end;
procedure GetBilinearPixelCoords(X, Y: Single;
out HorzWeight, VertWeight: Single;
out TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt: TPoint); inline;
begin
TopLeftPt := Point(FastFloor(X), FastFloor(Y));
HorzWeight := X - TopLeftPt.X;
VertWeight := Y - TopLeftPt.Y;
BottomLeftPt := Point(TopLeftPt.X, TopLeftPt.Y + 1);
TopRightPt := Point(TopLeftPt.X + 1, TopLeftPt.Y);
BottomRightPt := Point(TopLeftPt.X + 1, TopLeftPt.Y + 1);
end;
function InterpolateBytes(HorzWeight, VertWeight: Single; C11, C12, C21, C22: Byte): Byte; inline;
begin
Result := ClampToByte(Trunc(
(1 - HorzWeight) * (1 - VertWeight) * C11 +
(1 - HorzWeight) * VertWeight * C12 +
HorzWeight * (1 - VertWeight) * C21 +
HorzWeight * VertWeight * C22));
end;
function Bilinear24(X, Y: Single): TColor24Rec; inline;
var
TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt: TPoint;
HorzWeight, VertWeight: Single;
TopLeftColor, TopRightColor, BottomLeftColor, BottomRightColor: TColor24Rec;
begin
GetBilinearPixelCoords(X, Y,
HorzWeight, VertWeight,
TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt);
TopLeftColor := GetPixelColor24(TopLeftPt.X, TopLeftPt.Y);
BottomLeftColor := GetPixelColor24(BottomLeftPt.X, BottomLeftPt.Y);
TopRightColor := GetPixelColor24(TopRightPt.X, TopRightPt.Y);
BottomRightColor := GetPixelColor24(BottomRightPt.X, BottomRightPt.Y);
Result.R := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.R, BottomLeftColor.R, TopRightColor.R, BottomRightColor.R);
Result.G := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.G, BottomLeftColor.G, TopRightColor.G, BottomRightColor.G);
Result.B := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.B, BottomLeftColor.B, TopRightColor.B, BottomRightColor.B);
end;
function Bilinear8(X, Y: Single): Byte; inline;
var
TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt: TPoint;
HorzWeight, VertWeight: Single;
TopLeftColor, TopRightColor, BottomLeftColor, BottomRightColor: Byte;
begin
GetBilinearPixelCoords(X, Y,
HorzWeight, VertWeight,
TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt);
TopLeftColor := GetPixelColor8(TopLeftPt.X, TopLeftPt.Y);
BottomLeftColor := GetPixelColor8(BottomLeftPt.X, BottomLeftPt.Y);
TopRightColor := GetPixelColor8(TopRightPt.X, TopRightPt.Y);
BottomRightColor := GetPixelColor8(BottomRightPt.X, BottomRightPt.Y);
Result := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor, BottomLeftColor, TopRightColor, BottomRightColor);
end;
function Bilinear32(X, Y: Single): TColor32Rec; inline;
var
TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt: TPoint;
HorzWeight, VertWeight: Single;
TopLeftColor, TopRightColor, BottomLeftColor, BottomRightColor: TColor32Rec;
begin
GetBilinearPixelCoords(X, Y,
HorzWeight, VertWeight,
TopLeftPt, BottomLeftPt, TopRightPt, BottomRightPt);
TopLeftColor := GetPixelColor32(TopLeftPt.X, TopLeftPt.Y);
BottomLeftColor := GetPixelColor32(BottomLeftPt.X, BottomLeftPt.Y);
TopRightColor := GetPixelColor32(TopRightPt.X, TopRightPt.Y);
BottomRightColor := GetPixelColor32(BottomRightPt.X, BottomRightPt.Y);
Result.A := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.A, BottomLeftColor.A, TopRightColor.A, BottomRightColor.A);
Result.R := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.R, BottomLeftColor.R, TopRightColor.R, BottomRightColor.R);
Result.G := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.G, BottomLeftColor.G, TopRightColor.G, BottomRightColor.G);
Result.B := InterpolateBytes(HorzWeight, VertWeight,
TopLeftColor.B, BottomLeftColor.B, TopRightColor.B, BottomRightColor.B);
end;
{$IFDEF USE_FILTER_TABLE}
procedure PrecomputeFilterWeights;
var
I, J: Integer;
Weight: Single;
Fraction: Single;
begin
FillMemoryByte(@WeightTable, SizeOf(WeightTable), 0);
for I := 0 to TableSize do
begin
Fraction := I / (TableSize - 1);
for J := -KernelWidth to KernelWidth do
begin
Weight := FilterFunction(J + Fraction);
WeightTable[J, I] := Weight;
end;
end;
end;
{$ENDIF}
function FilterPixel(X, Y: Single; Bpp: Integer): TColor32Rec;
var
HorzEntry, VertEntry: TBufferEntry;
LoX, HiX, LoY, HiY: Integer;
I, J: Integer;
WeightHorz, WeightVert: Single;
CeilX, CeilY: Integer;
{$IFDEF USE_FILTER_TABLE}
XFilterTablePos, YFilterTablePos: Integer;
{$ELSE}
FracXS, FracYS: Single;
{$ENDIF}
SrcPixel: PColor32Rec;
ClipRect: TRect;
Edge: Boolean;
begin
ClipRect := Rect(0, 0, SrcWidth, SrcHeight);
Edge := False;
CeilX := FastCeil(X);
CeilY := FastCeil(Y);
with ClipRect do
begin
if not ((CeilX < Left) or (CeilX > Right) or (CeilY < Top) or (CeilY > Bottom)) then
begin
Edge := False;
if CeilX - KernelWidth < Left then
begin
LoX := Left - CeilX;
Edge := True;
end
else
LoX := -KernelWidth;
if CeilX + KernelWidth >= Right then
begin
HiX := Right - CeilX - 1;
Edge := True;
end
else
HiX := KernelWidth;
if CeilY - KernelWidth < Top then
begin
LoY := Top - CeilY;
Edge := True;
end
else
LoY := -KernelWidth;
if CeilY + KernelWidth >= Bottom then
begin
HiY := Bottom - CeilY - 1;
Edge := True;
end
else
HiY := KernelWidth;
end
else
Exit(BackColor32);
end;
{$IFDEF USE_FILTER_TABLE}
XFilterTablePos := Round((CeilX - X) * MaxTablePos);
YFilterTablePos := Round((CeilY - Y) * MaxTablePos);
{$ELSE}
FracXS := CeilX - X;
FracYS := CeilY - Y;
{$ENDIF}
VertEntry := EmptyBufferEntry;
for I := LoY to HiY do
begin
{$IFDEF USE_FILTER_TABLE}
WeightVert := WeightTable[I, YFilterTablePos];
{$ELSE}
WeightVert := FilterFunction(I + FracYS);
{$ENDIF}
SrcPixel := PColor32Rec(@PByteArray(SrcImage.Bits)[(LoX + CeilX + (I + CeilY) * SrcWidth) * Bpp]);
if WeightVert <> 0 then
begin
HorzEntry := EmptyBufferEntry;
for J := LoX to HiX do
begin
{$IFDEF USE_FILTER_TABLE}
WeightHorz := WeightTable[J, XFilterTablePos];
{$ELSE}
WeightHorz := FilterFunction(J + FracXS);
{$ENDIF}
HorzEntry.B := HorzEntry.B + SrcPixel.B * WeightHorz;
if Bpp > 1 then
begin
HorzEntry.R := HorzEntry.R + SrcPixel.R * WeightHorz;
HorzEntry.G := HorzEntry.G + SrcPixel.G * WeightHorz;
if Bpp > 3 then
HorzEntry.A := HorzEntry.A + SrcPixel.A * WeightHorz;
end;
Inc(PByte(SrcPixel), Bpp);
end;
VertEntry.A := VertEntry.A + HorzEntry.A * WeightVert;
VertEntry.R := VertEntry.R + HorzEntry.R * WeightVert;
VertEntry.G := VertEntry.G + HorzEntry.G * WeightVert;
VertEntry.B := VertEntry.B + HorzEntry.B * WeightVert;
end;
end;
if Edge then
begin
for I := -KernelWidth to KernelWidth do
begin
{$IFDEF USE_FILTER_TABLE}
WeightVert := WeightTable[I, YFilterTablePos];
{$ELSE}
WeightVert := FilterFunction(I + FracYS);
{$ENDIF}
if WeightVert <> 0 then
begin
HorzEntry := EmptyBufferEntry;
for J := -KernelWidth to KernelWidth do
begin
if (J < LoX) or (J > HiX) or (I < LoY) or (I > HiY) then
begin
{$IFDEF USE_FILTER_TABLE}
WeightHorz := WeightTable[J, XFilterTablePos];
{$ELSE}
WeightHorz := FilterFunction(J + FracXS);
{$ENDIF}
HorzEntry.A := HorzEntry.A + BackColor32.A * WeightHorz;
HorzEntry.R := HorzEntry.R + BackColor32.R * WeightHorz;
HorzEntry.G := HorzEntry.G + BackColor32.G * WeightHorz;
HorzEntry.B := HorzEntry.B + BackColor32.B * WeightHorz;
end;
end;
VertEntry.A := VertEntry.A + HorzEntry.A * WeightVert;
VertEntry.R := VertEntry.R + HorzEntry.R * WeightVert;
VertEntry.G := VertEntry.G + HorzEntry.G * WeightVert;
VertEntry.B := VertEntry.B + HorzEntry.B * WeightVert;
end;
end
end;
with Result do
begin
A := ClampToByte(Trunc(VertEntry.A + 0.5));
R := ClampToByte(Trunc(VertEntry.R + 0.5));
G := ClampToByte(Trunc(VertEntry.G + 0.5));
B := ClampToByte(Trunc(VertEntry.B + 0.5));
end;
end;
function RotatePoint(X, Y: Single): TFloatPoint;
begin
Result.X := ForwardCos * X - ForwardSin * Y;
Result.Y := ForwardSin * X + ForwardCos * Y;
end;
function Max4(X1, X2, X3, X4: Single): Single;
begin
Result := Math.Max(Math.Max(X1, X2), Math.Max(X3, X4));
end;
function Min4(X1, X2, X3, X4: Single): Single;
begin
Result := Math.Min(Math.Min(X1, X2), Math.Min(X3, X4));
end;
procedure CalcSourceCoordinates(DstX, DstY: Integer; out SrcX, SrcY: Single); {$IFDEF FPC}inline;{$ENDIF}
var
SrcCoordX, SrcCoordY: Single;
DstCoordX, DstCoordY: Single;
begin
DstCoordX := DstX - DstWidthHalf;
DstCoordY := DstHeightHalf - DstY;
SrcCoordX := BackwardCos * DstCoordX - BackwardSin * DstCoordY;
SrcCoordY := BackwardSin * DstCoordX + BackwardCos * DstCoordY;
SrcX := SrcCoordX + SrcWidthHalf;
SrcY := SrcHeightHalf - SrcCoordY;
end;
function CropToSource(const Pt: TFloatPoint): Single;
var
X, Y: Single;
begin
X := Abs(Pt.X / SrcWidthHalf);
Y := Abs(Pt.Y / SrcHeightHalf);
Result := MaxFloat(X, Y);
end;
begin
Assert(Image.Format in SupportedRotationFormats);
GetImageFormatInfo(Image.Format, FormatInfo);
while Angle >= 360 do
Angle := Angle - 360;
while Angle < 0 do
Angle := Angle + 360;
if (Angle = 0) or (Abs(Angle) = 360) then
Exit;
AngleRad := Angle * PI / 180;
SinCos(AngleRad, ForwardSin, ForwardCos);
SinCos(-AngleRad, BackwardSin, BackwardCos);
SrcImage := Image;
SrcWidth := SrcImage.Width;
SrcHeight := SrcImage.Height;
SrcWidthHalf := (SrcWidth - 1) / 2;
SrcHeightHalf := (SrcHeight - 1) / 2;
// Calculate width and height of the rotated image
TopLeft := RotatePoint(-SrcWidthHalf, SrcHeightHalf);
TopRight := RotatePoint(SrcWidthHalf, SrcHeightHalf);
BottomLeft := RotatePoint(-SrcWidthHalf, -SrcHeightHalf);
BottomRight := RotatePoint(SrcWidthHalf, -SrcHeightHalf);
if FitRotated then
begin
// Encompass the whole area of rotate image => bounding box
DstWidth := Ceil(Max4(TopLeft.X, TopRight.X, BottomLeft.X, BottomRight.X) -
Min4(TopLeft.X, TopRight.X, BottomLeft.X, BottomRight.X));
DstHeight := Ceil(Max4(TopLeft.Y, TopRight.Y, BottomLeft.Y, BottomRight.Y) -
Min4(TopLeft.Y, TopRight.Y, BottomLeft.Y, BottomRight.Y));
if ResamplingFilter <> rfNearest then
begin
// Account a bit for antialiased edges of the rotated image
Inc(DstWidth);
Inc(DstHeight);
end;
end
else
begin
// Crop to largest proportional rect inside the rotated rect
D := Max4(CropToSource(TopLeft), CropToSource(TopRight), CropToSource(BottomLeft), CropToSource(BottomRight));
DstWidth := Ceil(SrcWidth / D);
DstHeight := Ceil(SrcHeight / D);
end;
DstWidthHalf := (DstWidth - 1) / 2;
DstHeightHalf := (DstHeight - 1) / 2;
InitImage(DstImage);
NewImage(DstWidth, DstHeight, SrcImage.Format, DstImage);
Bpp := FormatInfo.BytesPerPixel;
DstByte := DstImage.Bits;
BackColor32 := TColor32Rec(BackgroundColor);
if ResamplingFilter = rfNearest then
begin
for Y := 0 to DstHeight - 1 do
for X := 0 to DstWidth - 1 do
begin
CalcSourceCoordinates(X, Y, SrcX, SrcY);
if (SrcX >= 0) and (SrcY >= 0) and (SrcX <= SrcWidth - 1) and (SrcY <= SrcHeight - 1) then
begin
if Bpp = 3 then
PColor24Rec(DstByte)^ := PColor24RecArray(SrcImage.Bits)[Round(SrcY) * SrcWidth + Round(SrcX)]
else if Bpp = 1 then
DstByte^ := PByteArray(SrcImage.Bits)[Round(SrcY) * SrcWidth + Round(SrcX)]
else
PColor32Rec(DstByte)^ := PColor32RecArray(SrcImage.Bits)[Round(SrcY) * SrcWidth + Round(SrcX)];
end
else
CopyPixel(@BackColor32, DstByte, Bpp);
Inc(DstByte, Bpp);
end;
end
else if ResamplingFilter = rfLinear then
begin
if SrcImage.Format = ifR8G8B8 then
begin
DstPixel24 := DstImage.Bits;
BackColor24 := TColor32Rec(BackgroundColor).Color24Rec;
// RGB 24bit path
for Y := 0 to DstHeight - 1 do
for X := 0 to DstWidth - 1 do
begin
CalcSourceCoordinates(X, Y, SrcX, SrcY);
if (SrcX >= -1) and (SrcY >= -1) and (SrcX <= SrcWidth) and (SrcY <= SrcHeight) then
DstPixel24^ := Bilinear24(SrcX, SrcY)
else
DstPixel24^ := BackColor24;
Inc(DstPixel24);
end;
end
else
begin
// A bit more generic 8+32bit path
for Y := 0 to DstHeight - 1 do
for X := 0 to DstWidth - 1 do
begin
CalcSourceCoordinates(X, Y, SrcX, SrcY);
if (SrcX >= -1) and (SrcY >= -1) and (SrcX <= SrcWidth) and (SrcY <= SrcHeight) then
begin
if Bpp = 1 then
DstByte^ := Bilinear8(SrcX, SrcY)
else
PColor32Rec(DstByte)^ := Bilinear32(SrcX, SrcY)
end
else
CopyPixel(@BackColor32, DstByte, Bpp);
Inc(DstByte, Bpp);
end;
end;
end
else
begin
case ResamplingFilter of
rfCubic: Filter := sfCatmullRom;
rfLanczos: Filter := sfLanczos;
else
Assert(False);
end;
FilterFunction := ImagingFormats.SamplingFilterFunctions[Filter];
FilterRadius := ImagingFormats.SamplingFilterRadii[Filter];
{$IFDEF USE_FILTER_TABLE}
KernelWidth := FastCeil(FilterRadius);
PrecomputeFilterWeights;
{$ENDIF}
for Y := 0 to DstHeight - 1 do
for X := 0 to DstWidth - 1 do
begin
CalcSourceCoordinates(X, Y, SrcX, SrcY);
Pixel32 := FilterPixel(SrcX, SrcY, Bpp);
CopyPixel(@Pixel32, DstByte, Bpp);
Inc(DstByte, Bpp);
end;
end;
FreeImage(SrcImage);
Image := DstImage;
end;
end.